• Title/Summary/Keyword: the vibration analysis

Search Result 9,951, Processing Time 0.036 seconds

Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation

  • Civalek, Omer;Ozturk, Baki
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • The current study presents a mathematical model and numerical method for free vibration of tapered piles embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution (DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various numerical applications demonstrate the validity and applicability of the proposed method for free vibration analysis. The results prove that the proposed method is quite easy to implement, accurate and highly efficient for free vibration analysis of tapered beam-columns embedded in Winkler- Pasternak elastic foundations.

Free Vibration Analysis of Double Cylindrical Shells Using Transfer of Influence Coefficent (영향계수의 전달에 의한 2중 원통형 셸의 자유진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.48-54
    • /
    • 2017
  • The transfer influence coefficient method which is an vibration analysis algorithm based on the transfer of influence coefficient is applied to the free vibration analysis of double cylindrical shells. After the computational programs for the free vibration analysis of double cylindrical shells were made using the transfer influence coefficient method and the transfer matrix method, we compared the results using the transfer influence coefficient method with those by the transfer matrix method. The transfer influence coefficient method provided the good computational results in the free vibration analysis of double cylindrical shells. In particular, The results of the transfer influence coefficient method are superior to those of the transfer matrix method when the stiffness of internal springs connecting a inside cylindrical shell and a outside cylindrical shell is very large.

Investigation of Transmission Characteristics of Tractor Seat Vibrations Using Vibration Path Analysis Method (VPA를 이용한 트랙터 좌석 진동의 전달 특성 구명)

  • 이주완;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.237-244
    • /
    • 2001
  • This work was intended to investigate the effect of vibration transmission paths on the ride vibration of tractor during the rotavating and transporting operations by applying the vibration path analysis method. Accelerations at the cab mounts were measured during the rotavating and transporting operations. Ride vibrations at the sear were than calculated using the measured accelerations at the cab mounts, and the frequency response functions and inertances between the seat and cab mounts, which were derived experimentally by the impact hammer test in static condition. The human sensitivity to vibration frequency was also taken into consideration for the calculation of ride vibrations at the 1/3 octave center frequencies in the frequency domain. Vibrations transmitted through rear cab mounts affected more significantly the ride vibration of tractor. The peak accelerations at the seat occurred at the frequencies of the engine and crank speed, and the frequency induced by tire lugs on the road transportation. It was found that the rear cab mounts should be improved in order to reduce the ride vibrations more effectively.

  • PDF

Free Vibration Analysis of Stiffened Plates Using Polynomials Having the Property of Timoshenko Beam Functions (Timoshenko 보함수 성질을 갖는 다항식을 이용한 보강판의 교유진동 해석)

  • 김병희;김진형;조대승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.623-628
    • /
    • 2004
  • In this study, the assumed-mode method using characteristic polynomials of Timoshenko beam is applied for the free vibration analysis of rectangular stiffened plates. The polynomial is derived considering the rotational constraint along the boundary edges of plate and the orthogonal relation of Timoshenko beam functions, which enables to simplify the free vibration analysis of plate structure having various boundary conditions. To verify the validity and effectiveness of the adopted method, numerical analysis for cross-stiffened plates were carried out and its results were compared with those obtained by the general purpose FEA software.

  • PDF

Implementation of Spectrum Analysis System for Vibration Monitoring

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.27-30
    • /
    • 2019
  • Factory monitoring systems are gaining importance in wide areas of industry. Especially, there have been many efforts in implementation of vibration measurement and analysis for monitoring the status of rotating machines. In this paper, a digital signal processor (DSP) based monitoring system dedicated to the vibration monitoring and analysis on rotating machines is discussed. Vibration signals are acquired and processed for the continuous monitoring of the machine status. Time domain signals and fast Fourier transform (FFT) are used for vibration analysis. All of the signal processing procedures are done in the DSP to reduce the production and maintenance cost. The developed system could also provide remote and mobile monitoring capabilities to operator via internet connection. This paper describes the overview of the functional blocks of the implemented system. Test results based on signals from small-size single phase motors are discussed for monitoring and defect diagnosis of the machine status.

Operation Deflection Shapes Analysis for Vibration Reduction of ATM Case (ODS 해석에 의한 ATM 케이스 진동 저감)

  • Shin, Bum-Sik;Lee, Seung-Mock;Kim, Do-Hyun;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.232-237
    • /
    • 2006
  • Operation deflection shapes(ODS) is defined as a motion of structure at particular frequency. The ODS is eligible to show any types of structural motions while the modes supply solutions only to linear and stationary motion. The principal vibration source of an auto teller machine(ATM) case was occurred due to resonance which was found by modal analysis. To reduce the vibration of ATM case, the motion of the case was visualized using ODS analysis, which can suggest how to modify the structure. As a result the vibration of the ATM case was greatly reduced with a stiffening bar between the opposite plates.

  • PDF

Investigation of the numerical analysis for the ultrasonic vibration in the injection molding

  • Lee, Jae-Yeol;Kim, Nak-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • We studied the flow characteristics of the polymer melt in the injection molding process with ultrasonic vibration by using the numerical analysis. To minimize the error between the experimental data and numerical result, we presented a methodology using the design of experiments and the response surface method for reverse engineering. This methodology can be applied to various fields to obtain a valid and accurate numerical analysis. Ultrasonic vibration is generally applied between an extruder and the entrance of a mold for improvement the flow rate in injection molding. In comparison with the general ultrasonic process, the mode shape of the mold must be also considered when the ultrasonic vibration is applied on the mold. The mode shape is defined as the periodic and spatial deformation of the structure owing to the effect of the vibration, and it varies greatly according to vibration conditions such as the forcing frequency. Therefore, we considered new index and found the forcing frequency for obtaining the highest flow rate within the range from 20 to 60 kHz on the basis of the index. Ultimately, we presented the methodology for not only obtaining a valid and accurate numerical analysis, but also for finding the forcing frequency to obtain the highest flow rate in injection molding using ultrasonic vibration.

Dynamic Analysis of KTX Vibration at the Tail of the Train (KTX 차량 후미진동 해석(I))

  • 강부병;김영우;왕영용
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was "appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

Finite Element Analysis for Satellite Antenna Structures Subject to Forced Sinusoidal Vibration (위성 안테나 구조물의 정현파 강제 진동에 대한 유한 요소 해석)

  • Shin, Won-Ho;Oh, Il-Kon;Han, Jae-Hung;Oh, Se-Hee;Lee, In;Kim, Chun-Gon;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.13-18
    • /
    • 2001
  • This paper deals with finite element analysis for free vibration and forced sine vibration of Ka- and Ku- bend antenna structures using MSC/PATRAN/NASTRAN. The structures are designed to satisfy minimum resonance frequency requirement in order to decouple the dynamic interaction of the satellite with the spacecraft bus structure. From the forced sinusoidal vibration, we have observed output acceleration versus input in X-,Y- and Z- direction, based on base excitation using large mass method. The results of finite elements analysis can be used as the reference data for the experimental test of satellite antenna, resulting in the reduction of cost and time by predicting and complementing experimental data.

  • PDF

Analysis of the Vibration Characteristic for the Mine Detectable Test Platform (지뢰탐지 실험플랫폼의 진동 특성 분석)

  • Chang, YuShin;Kwak, NoJin;Han, SeungHoon;Ji, UnHo;Ji, ChangJin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.588-595
    • /
    • 2014
  • In this paper, analysis of the vibration Characteristic for the Mine Detectable Test Platform is described. The test platform system is the multi-sensor mine detectable vehicle. This multi-sensor mine detectable unit is more efficient detection performance than other conventional methods. The test platform system has five subsystems, the UWB(Ultra Wide Band) sensor scanner, the MD(Metal Detector) sensor scanner, the neutron sensor scanner, and the detectable vehicle. We perform the vibration tests for the test platform and analyze the vibration characteristic, such as the max displacement, the max deformation and the max Von-Misses Stress.

  • PDF