• Title/Summary/Keyword: the vibration analysis

Search Result 9,924, Processing Time 0.037 seconds

Linearization Method and Vibration Analysis of a Constrained Multibody System Driven by Constant Generalized Speeds (일정 일반속력으로 구동되는 구속 다물체계의 선형화기법 및 진동해석)

  • 최동환;박정훈;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.725-730
    • /
    • 2001
  • This paper presents a vibration analysis method for constrained mechanical systems driven by constant generalized speeds. Equilibrium positions are obtained first and vibration analysis are performed around the positions. The method developed in this paper employs partial velocity matrix to obtain a minimum number of differential equations. To verify the accuracy of the proposed algorithm, linear vibration analyses of two numerical examples are performed and the results are compared with results from a commercial program or previous literature.

  • PDF

development of a model of the exhaust System for the Stress Analysis (응력해석을 위한 배기계 모델 개발)

  • 이장명;박성태;김상호;조규수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.370-376
    • /
    • 1997
  • A Simplified Finite Element Method(FEM) model has been developed for the Exhaust System. For the verification of the usage of the developed model , Natural Frequencies, Mode Shapes and Frequency Response Function have been compared between numerical analysis and experimental result. It shows that the developed numerical model also can be utilized to prove the Stress distribution of the Exhaust System if it can be adopted for the vibration analysis adequately.

  • PDF

Vibration Analysis and Experiments of a Chip Mounting Device (칩마운터의 진동 해석 및 실험 분석)

  • 고병식;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1039-1042
    • /
    • 2002
  • SMD(Surface Mounting Device) which mounts electronic components as IC-Chips on PCB automatically, produces a large dynamic force and vibration. The unwanted vibrations in SMD degrade the performance of the precision device and it is the major obstacle to limit its speed for mounting. This study investigated the vibration analysis of a typical SMD to predict the natural frequencies and mode shapes. To validate the finite element analysis of SMD, the FE result was compared with that of ODS measurements. It was shown that the predicted results were well correlated with the experimental modal parameters.

  • PDF

Vibration Analysis of ultrasonic Horn for Flip-Chip Bonding (플립칩 접합용 초음파 혼의 진동해석)

  • Kim, Il-Kwang;Hong, Sang-Hyuk;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.364-367
    • /
    • 2008
  • Finite element model and the basic experimental method have been developed to help the design of the transverse ultrasonic horn for flip-chip bonding. With two types of design the horn performance and ultrasonic characteristics are verified by using laser vibrometer. These analysis and experiment results can be the fundamental data for ultrasonic horn design considering the vibration modes and performance.

  • PDF

Vibration Reduction of an Optical Disk Drive with a Dynamic Vibration Absorber (동흡진기를 사용한 광 디스크 드라이브의 진동저감)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.529-536
    • /
    • 2006
  • In high-speed optical disk drive, the excitation caused by rotation of a mass-unbalanced disk is a major source of vibration. The vibration can be a disturbance to the servo system, which is sufficient to cause severe failures in the reading and writing process. The vibration also causes users to feel unpleasantness. The vibration reduction is therefore essential for the reliable operation of optical disk drive. One of the approaches to reduce the vibration is a dynamic vibration absorber(DVA). In this paper, we analyze the dynamic behavior of $DVD{\pm}RW$ combo drive system with DVA through 12-dof rigid multi-body dynamic model. The effective location and the optimal frequency ratio for the DVA are obtained from the analysis. The DVA are fabricated based on the analysis and its usefulness is confirmed.

The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake (디스크 브레이크에서 열섬 현상이 발생되는 원인과 저더 진동에 미치는 영향)

  • Cho, Ho-Joon;Cho, Chong-Du;Kim, Myoung-Gu;Maeng, Ju-Won;Lee, Jae-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.213-218
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

  • PDF

The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake (디스코 브레이크에서 열섬 현상이 발생되는 원인과 저더진동에 미치는 영향)

  • Cho, Chong-Du;Kim, Myoung-Gu;Cho, Ho-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.886-892
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

Evaluation on the Floor Vibration Characteristics for the Vibration Control of Vibration Sensitive Equipments (정밀 혐진기기 방.제진을 위한 바닥 진동성능평가에 관한 연구)

  • Lee, Ho-Beom;Lho, Byeong-Cheol;Cho, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.933-939
    • /
    • 2000
  • In this paper we present an overview of the factors and techniques that must be considered in vibration measurements in the floor structures for microelectronics facilities. Normally narrowband vibration spectrum or equivalent signals are suggested as the guide indexes of site vibration phenomina. But it cannot support perfect informations in designing vibration control systems for the vibration sensitive equipment even though the spectrum serves to illustrate the fact that most real vibration environments are dominated by broadband energy as opposed to tonal energy. The major topics cover stiffness in frequency and time domain, acceleration level and modal characteristics from experimental modal analysis as well as narrowband spectrum. The combined signal analysis through the items mentioned above can give better solutions and would be positively recomended to solve the vibration problems on a sort of limited field.

  • PDF

Free Vibration Analysis of Double Cylindrical Shells Using Transfer of Influence Coefficent (영향계수의 전달에 의한 2중 원통형 셸의 자유진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.48-54
    • /
    • 2017
  • The transfer influence coefficient method which is an vibration analysis algorithm based on the transfer of influence coefficient is applied to the free vibration analysis of double cylindrical shells. After the computational programs for the free vibration analysis of double cylindrical shells were made using the transfer influence coefficient method and the transfer matrix method, we compared the results using the transfer influence coefficient method with those by the transfer matrix method. The transfer influence coefficient method provided the good computational results in the free vibration analysis of double cylindrical shells. In particular, The results of the transfer influence coefficient method are superior to those of the transfer matrix method when the stiffness of internal springs connecting a inside cylindrical shell and a outside cylindrical shell is very large.

Vibration Analysis of a Rotary Compressor

  • Han, Hyung-Suk;Hwang, Seon-Woong;Koo, Jeong-Seo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.43-53
    • /
    • 2004
  • The vibration of a rolling piston type rotary compressor for air-conditioning use is analyzed numerically and experimentally. Multibody dynamic analysis methods to predict the vibration are given. The compressor is modeled as a multibody system composed of bodies, joints, and force elements. Experimental results are shown to compare with simulation results. A sensitivity study using different variables that affect the compressor vibration is also carried out. It is found that the mass of the weight balancer plays an important role in acceleration.