• Title/Summary/Keyword: the strain at maximum stress

Search Result 335, Processing Time 0.027 seconds

The Effects of the Testing Temperatures on the Mechanical Properties of the Carbon Tool Steel(SK4M) for Flat Spring (박판 스프링용 탄소공구강재(SK4M)의 시험온도에 따른 기계적 특성)

  • 류태호;원시태;박상언;임철록
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.693-696
    • /
    • 2002
  • This study examined the effects of the testing temperature on the mechanical properties of the carbon tool steel (SK4M) for flat spring. Hardness test and fatigue test were performed at room temperature ($20^{\circ}C$). Tensile test and creep test were performed at temperature range $20^{\circ}C$ ~$160^{\circ}C$. The micro-vickers hardness values of SK4M was Hv=584. The Elastic modulus, tensile strength and yield strength of SK4M at 160t test temperature were decreased 0.92 time, 0.97 time and 0.82 time those of SK4M at 2$0^{\circ}C$ test temperature, respectively. The maximum creep strain for 100hr at creep temperature ($80^{\circ}C$ ~$160^{\circ}C$) and creep stress ($37.4Kgf/\textrm{mm}^2$ ~$93.6Kgf/\textrm{mm}^2$) was 0.572%. The fatigue limit of SK4M was $94Kgf/\textrm{mm}^2$.

  • PDF

The Formation Behavior and Thermal Stability of $E_6$ Eutectic Phase in Unidirectionally Solidified Al-Fe Alloys (일방향 응고시킨 Al-Fe계 합금에서 $E_6$ 공정상의 생성특성과 열적안정성)

  • Jung, Hae-Ryong
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • Eutectic and off-eutectic Al-Fe alloys were unidirectionally solidified at the solidification rate of $1{\sim}50\;mm/min$ under the temperature gradients $75{\sim}80^{\circ}C/cm$. The investigation has been carried out for the microstructural variation, phase transition, mechanical properties by means of detailed analyses of stress-strain, micro-Vickers hardness and scanning electron micrography. The thermal stability at elevated temperature has been studied on $Al-Al_6Fe$ eutectic alloy held at $600^{\circ}C$ for $0{\sim}150$ hours. When the solidification rate was less than 10mm/min, the X-ray diffraction and EDS analysis showed the presence of $Al_3Fe$ compound. As the solidification rate more than 20 mm/min, $Al-Al_3Fe$ eutectic phase was transfered into $Al-Al_6Fe$ eutectic phase. The mechanical properties of unidirectionally solidified off-eutectic Al-Fe alloy is better than those of unidirectionally solidified eutecic Al-Fe alloy Maximum ultimate tensile strength was obtained in Al-2.25% Fe alloy which was unidirectionally solidified at the solidification rate of 20 mm/min. The metastable $Al-Al_6Fe$ phase was transferred into stable $Al-Al_3Fe$ phase at $600^{\circ}C$ held for 150 hours.

  • PDF

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.

A Study on the Viscoelastic Properties of Rubber Blends for Shoes Outsole (신발 밑창용 고무 블렌드물의 점탄성적 특성에 대한 연구)

  • Park, Cha-Cheol;Pyo, Kyung-Duk
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • The CIIR blends, which is use for shoes outsole, with SSBR, XNBR and KBR were prepared with various mixing ratio. The viscoelastic properties of these blends, such as tensile modulus, rebound resilience, storage modulus, tan${\delta}$, and creep properties were measured. In the rebound resilience measurement, KBR showed the highest value, which means the lowest energy absorption to stress. As SSBR, XNBR and KBR blends with CIIR, the rebound resilience of the mixtures showed tendency to increase in arithmetic average. In the creep measurement, CIIR showed the highest visconse strain to stress, SSBR and KBR showed lower visconse strain. Maximum tan${\delta}$ peak of CIIR, SSBR and XNBR appeared at $-30^{\circ}C$, $5^{\circ}C$ and $0^{\circ}C$ respectively.

Numerical modeling and prediction of adhesion failure of adhesively bonded composite T-Joint structure

  • Panda, Subhransu K;Mishra, Pradeep K;Panda, Subrata K
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.723-735
    • /
    • 2020
  • This study is reported the adhesion failure in adhesive bonded composite and specifically for the T-joint structure. Three-dimensional finite element analysis has been performed using a commercial tool and the necessary outcomes are obtained via an eight noded solid element (Solid 185-element) from the library of ANSYS. The structural analysis input has been incurred through ANSYS parametric design language (APDL) code. The normal and shear stress distributions along different layers of the joint structure have been evaluated as the final outcomes. Based on the stress distributions, failure location in the composite joint structure has been identified by using the Tsai-Wu stress failure criterion. It has been found that the failure index is maximum at the interface between flange and web part of the joint (top layer) which indicates the probable location of failure initiation. This kind of failures are considered as adhesion failure and the failure propagation is governed by strain energy release rate (SERR) of fracture mechanics. The different adhesion failure lengths are also considered at the failure location to calculate the SERR values i.e. mode I fracture (opening), mode II fracture (sliding) and mode III fracture (tearing) along the failure front. Also, virtual crack closure technique (VCCT) principle of fracture mechanics steps is used to calculate the above said SERRs. It is found that the mode I SERR is more dominating compared to other two modes of failure for the joint considered. Finally, the influences of various parametric (geometrical and material) effect on SERR of the joint structure are evaluated and discussed in details.

A Study on the Optimal Location of the Inclinometer and Strain Gauge in Small-Scale Underground Excavation (소규모 지하굴착에서 지중경사계와 변형률계의 최적 위치 선정에 대한 연구)

  • Gichun Kang;Jinuk Park;Byeongjin Roh;Jiahao Sun;Seong-Kyu Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.23-33
    • /
    • 2023
  • Currently, there are cases in Korea where economic damage has occurred due to the ambiguity instrument installation and operation standards in the construction of temporary earth retaining wall, failing to prevent collapse of temporary earth retaining wall at the construction site in advance. Therefore, in this study, a numerical analysis was conducted to find the appropriate installation location of the inclinometer and strain gauge among the installed instruments shown in the design drawing of the temporary earth retaining wall. As a results, It was found that the installation position of the underground inclinometer is the corner of the retaining wall in the case of plane-deformation analysis, and the most displacement occurs in the center of the excavation surface in the case of 3D analysis. When the stress and moment are comprehensively analyzed, the corner is judged to be a vulnerable point. In the case of the strain gauge, In plane-deformation analysis and 3D analysis, the maximum bending stress occurred at the wale connection where the end of the strut and the counter strut are in contact. At this point, it is analyzed that it is necessary to focus on installing and managing the connection to prevent accidents from being vulnerable.

Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads (콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증)

  • Nam, Jeong-Hee;Kim, Woo Seok;Kim, Ki Hyun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.

On Prediction of Ground Heave and the Performance of the Isolation-tube Shafts (지반 괭창량 예측과 분리형 현장 타설 말뚝의 거동)

  • 김명학
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.111-128
    • /
    • 1998
  • An experimental study, which included four 305mm-diameter test shafts, one reference shaft with standard design and three test shafts with isolation tubes, is described. The soil was also soil heave and shrinkage that occur during suction changes at the field site. The test shafts were monitored for a period of about 18 months. Maximum ground movements exceeding 35mm were observed. Movements of only 1 to 2mm were observed in the test shafts with isolation tubes, while movements of 4 to 5mm were observed in the reference shaft. A simple computing model was developed to predict, based on suction changes, the maximum amount of ground heave. Relationship among suction. total stress, and volumetric strain was abtained in the laborstory. This relationship, used as inputs to the predictive model, enabled the computation of the maximum ground heave.

  • PDF