• Title/Summary/Keyword: the spring-damper system

Search Result 269, Processing Time 0.023 seconds

A Study on the Acoustic Absorption Character of a Helmholtz Resonator in Model Chamber (모형연소실에 장착한 헬름홀츠 공명기의 흡음특성에 관한 연구)

  • Park, Ju-Hyun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.399-402
    • /
    • 2009
  • Acoustic design parameters of a Helmholtz resonator are studied experimentally and numerically for acoustic stability in a model acoustic tube. According to standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of sound absorption coefficient are evaluated and thereby, the acoustic damping capacity of the resonator is characterized. Helmholtz resonator on spring-damper system use were understanding for acoustic damping. The length of orifice and the volume of cavity of resonator are selected as design parameters for tuning of the resonator. Acoustic- damping capacity of the resonator increases with its cavity volume. And orifice length as increases with acoustic damping capacity was decreased.

  • PDF

Development of Ship Vibration Analysis Software PFADS-R3 and Its Applications

  • Hong Suk-Yoon;Seo Seong-Hoon;Park Young-Ho;Lee Ho-Won
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2004
  • PFFEM software, PFADS has been developed for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. PFFEM is numerical method which solves energy governing equation using finite element technique for complicated structures where the exact solutions are not available. Through the upgrades, present PFADS R3 could cover the general beam and plate structures including various kinds of beam-plate rigid joints and other joint systems such as spring-damper junction and rigid bar connection. This software is composed of 3 parts; translator, model converter and solver. The translator makes its own FE-model from bulk data of commercial FE software, and the model converter is used to convert FE-model to PFFE-model automatically. The solver calculates vibrational energy density and intensity for PFFE-model by solving global matrix equations of PFFEM. For the applications of real transportation systems, a container ship model has been examined with respect to major parameters, and reliable results have been obtained.

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

A Study on the Reduction Technique of Recoil Force for Soft Recoil System using Dynamic Behavior (동적 거동을 이용한 연식주퇴장치의 주퇴력 저감 기법 연구)

  • Yoo, Sam-Hyeon;Lee, Jae-Yeong;Lee, Jong-Woo;Jo, Seong-Sik;Kim, Ju-Hee;Kim, In-Su;Lim, Soo-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • The future combat system is likely to be studied and developed in terms of enhancing both firepower and mobility simultaneously. Increased firepower often necessitates a heavier firing system. In return, the body of the vehicle needs to be light-weight in order to improve the mobility of the whole system. For this reason, in the areas of weapons systems such as the tank and self-propelled artillery, a number of studies attempting to develop designs that reduce recoil force against the body of the vehicle are being conducted. The current study proposes a tank construction that has a mass-spring-damper system with two degrees of freedom. A tank structure mounted with a specific soft recoil system that was implemented using a soft recoil technique and another tank structure based on a general recoil technique were compared to each other in order to analyze the recoil forces, the displacements of recoil, and the firing intervals when they were firing. MATLAB-Simulink was used as a simulating tool. In addition, the relationship between the movement of the recoil parts and the positions of the recoil latches in each of the two structures were analyzed. The recoil impact power, recoil displacement, firing interval, and so on were derived as functional formulas based on the position of the recoil latch.

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.

An Optimum Design of a Steering Column to Minimize the Injury of a Passenger (승객 상해의 감소를 위한 승용차 조향주의 최적설계)

  • Park, Y.S;Lee, J.Y.;Park, G.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.33-44
    • /
    • 1995
  • As the occupant safety receives more attention from automobile industries. protection systems have been developed quite well. Developed protection systems must be evaluated through real tests in crash environment Since the real tests are extremely expensive. computer simulations are replaced for some prediction of the real test In the computer simulation. it is very crucial to express the real environment precisely in the modeling precess. The energy absorbing(EA) steering system has a very important rote in vehicle crashes because the occupant can hit the system directly. In this study. the EA steering system is modeled precisely. analyzed for the safely and designed by an optimization technology. First. the EA steering system is disassembled by parts and modeled by segments and joints. The segments are modeled by rigid bodies in motion and they have resistances in contact. Spring-damper elements and force-deflection curves are utilized to represent the joints. The body block test is cal lied out to validate. the modeling. When the test results are not enough for the detailed modeling. the differences between tests and simulations are minimized to calculate unknown parameters using optimization. The established model is applied to a crash simulation of a full-car model and tuned again. After the modeling is finished. components of the steering system are designed by an optimization algorithm. In the optimization process. the compound injury of a driver is defined and minimized to determine the chracteristics of the components. The second. order approximation algorithm has been adopted for the optimization.

  • PDF

A Study on the Design of Dynamic System and Vibration Isolation System in a High-speed Press (고속프레스의 다이나믹 시스템 및 방진시스템 설계에 관한 연구)

  • Suh, Jin Sung;Jeong, Chel-Jea;Hyeon, Gi-Yong;Ryoo, Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.856-865
    • /
    • 2015
  • In a high-speed press, numerous moving links are interconnected and each link executes a constrained motion at high speed. As a consequence, high-level dynamic unbalance force and unbalance moment are transmitted to the main frame of the press, which results in unwanted vibration and significantly degrades manufacturing accuracy. Dynamic unbalance force and unbalance moment inevitably transmits high-level vibrational force to the foundation on which the press is installed. Minimizing the vibrational force transmitted to the foundation is critical for the protection of both the operators and the surrounding structures. The whole task should be carried out in two steps. The first step is to reduce dynamic unbalance based upon kinematic and dynamic analyses. The second step is to design and build an optimal vibration isolation system minimizing the vibrational force transmitted to the foundation. Firstly, the dynamic design method is presented to reduce dynamic unbalance force and moment. For this a 3D CAD software was utilized and a computer program was written to compute dynamic unbalance force and moment. Secondly, the design method for vibration isolation system is presented. The method for designing coil springs and viscous dampers are explained in detail.

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures in a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • Han, Jaehyuk;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.251-258
    • /
    • 2005
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings (HDB) in an HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Reynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigen value problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures In a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.572-578
    • /
    • 2003
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings in a HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Raynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigenvalue problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

  • PDF

Development of a User-friendly Continuous-system Simulation Language (사용자 편의성을 고려한 연속체계 모의실험 언어의 개발)

  • 민경하;임창관;박찬모
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1993.10a
    • /
    • pp.12-13
    • /
    • 1993
  • 컴퓨터를 이용한 모의 실험 방법은 과학 및 공학 분야뿐만 아니라 경제,사회 현상등에도 널리 적용될 수 있는 유용한 도구이다. 그 중에서도 연속체계 모의 실험은 미분 방정식으로 모델링되는 시스템을 대상으로 하는 경우가 맡으며, 이를 위하여 그동안 맡은 연속체계 모의 실험 언어들이 개발되었다. 그러나 그들은 대부분 사용하기가 복잡하여 사용자 편의성을 고려한 모의 실험 언어에 대한 필요성이 증대되었다. 본 연구에서는 사용자에개 최대한 편의성을 제공하는 연속체계 모의 실험 언어인 PCSL (Postech Continuous-system Simulation language)을 개발하였다. PCSL 프로그램은 프로그램 헤더, 상수 정의부, 함수 정의부, 매개 변수 정의부, 초기화 선언부, 모델 정의부, 종료 조건 선언부, 출력 선언부 등으로 나누어 진다. 그리고 출력으로는 계산 결과를 파일에 저장, 흑은 수치로 인쇄하거나 그래프로 그려서 보여준다. PCSL 처리 시스템은 모델 정의부에서 주어진 미분방정식을 해석해서 digital-analog simulation 기법으로 풀 수 있는 형태로 변환하는 번역기와 이렇게 변환된 형태의 미분방정식과 여러 가지 조건들을 고려해서 C 프로그램을 생성해주는 생성기, 생성된 C 프로그램을 실행시켜서 그 결과를 얻는 실행기,그리고 사용자에게 편리한 입출력 방법을 제공하는 사용자 인터페이스로 구성된다. 번역기에서는 모델로 주어진 미분방정식의 종류를 결정한 후에 이들을 digital-analog simulation 기법으로 풀 수 있는 형태로 변환한다. 생성기에서는 번역기의 결과를 받고,프로그램 상의 여러 가지 조건들을 고려해서 C 프로그램을 생성한다. 여기서 생성된 C프로그램은 미분방정식을 포함하는 ‘f.c'와 조건들을 포함하는'main.h', 그리고 digital-analog simulation 기법을 이용하는 모의 실험 알고리즘을 구현한 'main.c'로 구성된다. 그리고 실행기에서는 생성기에서 생성한 C 프로그램을 실행시켜서 결과를 얻는다. 여기에서 필요로 하는 PCSL 프로그램의 내응은 종료 조건 선언부, 출력 선언부 등이다. 마지막으로 사용자 인터페이스는 사용자가 간편하게 PCSL 프로그램을 입력할 수 있게 도와주며 모의 실험 결과를 쉽게 화면상에 보여주기 위한 것이다. 이 때에 사용자가 원하면 계산 결과를 그래프로 그려서 보여주는 기능과 화면에 보이는 결과를 프린터로 출력할 수 있는 기능을 제공한다. 실형 결과로는 먼저 선형 상미분방정식의 예로 mass-damper-spring system, 비선형 상미분방정식의 예로는 van der Pol 방정식, 연립 상미분방정식의 예로는 mixing tank problem 등을 보였으며, 그의 공학에서 일어나는 여러 가지 문제들도 다루었다.

  • PDF