• Title/Summary/Keyword: the shape of water

Search Result 2,328, Processing Time 0.029 seconds

A Study on Measuring Electrical Capacitance to Access the Volumetric Water Content of Simulated Soil

  • Rial, W.S.;Han, Y.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • Wet porous media representing agronomic soil that contains variable water content with variable electrolyte concentration was measured to study the shape of the curves of the electric double layer capacitance versus frequency (from 10 KHz to 10 MHz. This was done in an attempt to find the lowest practical operating frequency for developing low cost dielectric constant soil moisture probes. Cellulose sponge was used as the porous media. A high frequency electronic bridge circuit was developed for measuring the equivalent network parallel resistance and capacitance of porous media. It appears that the effects of the electric double layer component of the total parallel network capacitance essentially disappear at operating frequencies greater than approximately 25 MHz at low electrolyte concentrations but are still important at 50 MHz at higher concentrations. At these frequencies, the double layer capacitance masks the diffusion region capacitance where true water content capacitance values reside. The general shape of the curve of volumetric water content versus porous media dielectric constant is presented, with an empirical equation representing data for this type of curve. It was concluded that the lowest frequency where dielectric constant values which represent true water content information will most likely be found is between 30 and 50 MHz at low electrolyte concentrations but may be above 50 MHz when the total electrolyte concentration is near the upper level required for most mesophyte plant nutrition.

  • PDF

Finding the optimum shape of the energy dissipator to minimize the impact force due to the dam break flow

  • Asrini Chrysanti;Sangyoung Son
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.157-169
    • /
    • 2024
  • The sudden release of water from a dam failure can trigger bores on a flat surface and exert substantial impact forces on structures. This flow poses a high-risk flood hazard to downstream urban areas, making it imperative to study its impact on structures and devise effective energy dissipators to mitigate its force. In this study, a combination of Genetic Algorithm optimization and numerical modeling is employed to identify the optimal energy dissipator. The analysis reveals that a round arc-shaped structure proves most effective, followed by a triangular shape. These shapes offer wide adaptability in terms of structure dimensions. Structures with higher elevation, especially those with round or triangular shapes, demonstrate superior energy dissipation capabilities. Conversely, square-shaped structures necessitate minimal height to minimize impact forces. The optimal width for dissipating energy is found to be 0.9 meters, allowing for effective wave run-up and propagation. Furthermore, the force exerted on structures increases with higher initial water levels, but diminishes with distance from the dam, highlighting the importance of placement in mitigating impact forces.

Impact of Biochar Particle Shape and Size on Saturated Hydraulic Properties of Soil

  • Lim, Tae-Jun;Spokas, Kurt
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • BACKGROUND: Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool evaluating the impact of the shape and the size distribution of biochar on soil saturated hydraulic conductivity ($K_{sat}$). METHODS AND RESULTS: Plastic beads of different size and morphology were compared with biochar to assess impacts on soil $K_{sat}$. Bead and biochar were added at the rate of 5% (v/w) to coarse sand. The particle size of bead and biochar had an effect on the $K_{sat}$, with larger and smaller particle sizes than the original sand grain (0.5 mm) decreasing the $K_{sat}$ value. The equivalent size bead or biochar to the sand grains had no impact on $K_{sat}$. The amendment shape also influenced soil hydraulic properties, but only when the particle size was between 3-6 mm. Intra-particle porosity had no significant influence on the $K_{sat}$ due to its small pore size and increased tortuosity compared to the inter-particle spaces (macro-porosity). CONCLUSION: The results supported the conclusion that both particle size and shape of the amended biochar impacted the $K_{sat}$ value.

LAG TIME RELATIONS TO CATCHMENT SHAPE DESCRIPTORS AND HYDROLOGICAL RESPONSE

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • One of the most important factors for estimating a flood runoff from streams is the lag time. It is well known that the lag time is affected by the morphometric properties of basin which can be expressed by catchment shape descriptors. In this paper, the notion of the geometric characteristics of an equivalent ellipse proposed by Moussa(2003) was applied for calculating the lag time of geomorphologic instantaneous unit hydrograph(GIUH) at a basin outlet. The lag time was obtained from the observed data of rainfall and runoff by using the method of moments and the procedure based on geomorphology was used for GIUH. The relationships between the basin morphometric properties and the hydrological response were discussed based on application to 3 catchments in Korea. Additionally, the shapes of equivalent ellipse were examined how they are transformed from upstream area to downstream one. As a result, the relationship between the lag time and descriptors was shown to be close, and the shape of ellipse was presented to approach a circle along the river downwards. These results may be expanded to the estimation of hydrological response of ungauged catchment.

  • PDF

Optimal Shape of LCVA considering Constraints on Liquid Level (수위의 구속조건을 고려한 LCVA의 최적형상)

  • Park, Ji-Hun;Kim, Gi-Myun;Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.429-437
    • /
    • 2009
  • This study addresses the optimal shape of a LCVA maximizing its vibration control effect through numerical parametric study. Various LCVAs having the same total mass and tuning frequency are designed with constraints on the dimensions and water level, and one obtaining the highest equivalent damping ratio of the controlled system is chosen as an optimal solution. As a result, it was found that the limit on the variation of the water level in the vertical liquid column plays an important role constraining the shape of the LCVA. As the LCVA width perpendicular to the plane of liquid motion increases, the equivalent damping ratio rises with slowdown so that determination of the proper width is important in design of the LCVA shape.

Analysis of Initial Mass Distribution and Facility Shape to Determine Structural Alternative for Hazardous Zone Vulnerable to Debris Flow Disaster (토사재해 위험지역의 구조적 대안 설정을 위한 사태물질 초기 질량분포 및 방어시설물 형상의 영향 분석)

  • Seong, Joo-Hyun;Oh, Seung Myeong;Jung, Younghun;Byun, Yoseph;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.76-82
    • /
    • 2016
  • A 2-D hydrodynamic model for predicting the movement of debris flow was developed. The developed model was validated against a dam break flow problem conducted in EU CADAM project, and the performance of the model was shown to be satisfactory. In order to suggest structural alternative for hazardous zone vulnerable to debris flow disaster, two types of initial mass distribution and two shapes of defensive structure were considered. It was found that 1) the collapse of debris mass initiated with square pyramid shape induced more damage compared with that of cubic shape; and 2) a defensive structure with semi-circular shape was vulnerable to debris flow disaster in terms of debris control or primary defense compared with that of rectangular-shaped structure.

Water Jet Experiment of Automatic Fire-tracking Water Cannon Facility combined with Indoor Hydrant Facility in Road Tunnels (도로터널의 옥내소화전설비 겸용 자동화점추적 방수총설비의 방수실험)

  • Kim, Chang-Yong;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • To determine if water-jet nozzle moves and water jetting are effective according to the location of the fire, this study examined the automatic fire-tracking water cannon system and aan indoor hydrant system, such as water jet centered directivity, water jet range maintainability and water jet shape uniformity. First, an examination to find the center of fire accurately from this system design showed that the water jet centered test was accurate. Second, the water jet range test results showed that when water is jetted at the maximum water jet radius, the water jet shows an inaccurate result but within the allowable tolerance range. Finally, the water-jet shape test result confirmed that there are no problems in setting the block from the algorithm design.

Observation of bubble dynamics under water in high-magnetic fields using a high-speed video camera

  • Lee, Seung-Hwan;Minoru Takeda
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.291-298
    • /
    • 2004
  • The observations of rapid motion of bubbles under water for approximately 50 ms or less in high-magnetic fields of 10 T have been carried out successfully for the first time. The observation system constructed is composed of a high-speed video camera, a telescope, a cryostat with a split-type superconducting magnet, a light source, a mirror and a transparent sample cell. Using this system, the influence of magnetic field on the path and shape of single bubbles of O$_2$ (paramagnetism) and N$_2$ (diamagnetism) has been examined carefully. Experimental values describing the path are in good agreement with theoretical values calculated on the basis of the magneto-Archimedes effect, despite the effect of magnetism on the bubble. However, no effect of magnetism on the shape of the bubble is observed. In addition, the influence of magnetic field on drag coefficient of the bubble is discussed.

  • PDF

The Study of Calcium Hydroxide Points.

  • Yanagidani, T.;Terata, R.;Nakasima, K.;Sekine, K.;Kubota, M.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.567.2-567
    • /
    • 2001
  • The purpose of this study was to evaluate the shape, the composition of Calcium Hydroxide Points (CH Point) and to determine the pH level in water. The shape of CH Point was measured by using a profile projector. The composition of the CH Point was analyzed by the X-ray diffraction and the EPMA. #60 CH Point was stored in 10ml of demineralized water that was replaced every day or not replaced for 7 days period. The pH levels of the water were measured by using an ion electrode with an ion meter every day.(omitted)

  • PDF

Observation of bubble dynamics under water in high-magnetic fields using a high-speed video camera

  • Lee, Seung-Hwan;Takeda, Minoru
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • The observations of rapid motion of bubbles under water for approximately 50ms or less in high . magnetic fields of 10 T have been carried out successfully for the first time. The observation system constructed is composed of a high-speed video camera, a telescope, a cryostat with a split-type superconducting magnet, a light source, a mirror and a transparent sample cell. Using this system, the influence of magnetic field on the path and shape of single bubbles of $O_2$(paramagnetism) and $N_2$ (diamagnetism) has been examined carefully. Experimental values describing the path are in good agreement with theoretical values calculated on the basis of the magneto-Archimedes effect, despite the effect of magnetism on the bubble. However, no effect of magnetism on the shape of the bubble is observed In addition, the influence of magnetic field on drag coefficient of the bubble is discussed.