• Title/Summary/Keyword: the second order regression

Search Result 870, Processing Time 0.034 seconds

Estimation of Asymmetric Bell Shaped Probability Curve using Logistic Regression (로지스틱 회귀모형을 이용한 비대칭 종형 확률곡선의 추정)

  • 박성현;김기호;이소형
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • Logistic regression model is one of the most popular linear models for a binary response variable and used for the estimation of probability function. In many practical situations, the probability function can be expressed by a bell shaped curve and such a function can be estimated by a second order logistic regression model. However, when the probability curve is asymmetric, the estimation results using a second order logistic regression model may not be precise because a second order logistic regression model is a symmetric function. In addition, even if a second order logistic regression model is used, the interpretation for the effect of second order term may not be easy. In this paper, in order to alleviate such problems, an estimation method for asymmetric probabiity curve based on a first order logistic regression model and iterative bi-section method is proposed and its performance is compared with that of a second order logistic regression model by a simulation study.

  • PDF

Slope Rotatability of Second Order Response Surface Regression Models with Correlated Errors

  • Jung, Hyang-Sook;Park, Sung-Hyun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.95-100
    • /
    • 2005
  • In this paper a class of multifactor designs for estimating the slope of second order response surface regression models with correlated errors is considered. General conditions for second order slope rotatability over all directions and also with respect to the maximum directional variance in case of k=2 have been derived assuming errors have a general correlated error structure. And we consider the measures for evaluating slope rotatability with correlated errors similar to in case of uncorrelated error structures.

  • PDF

Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy (알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

Strength Estimation Model of Resistance Spot Welding in 780MPa Steel Sheet Using Simulation for High Efficiency Car Bodies (시뮬레이션을 이용한 고효율 차체용 780MPa급 강판의 저항 점 용접 강도 예측 모델 개발)

  • Son, Chang-Seok;Park, Young-Whan
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.70-77
    • /
    • 2015
  • Nowadays, car manufacturers applied many high strength steels such AHSS or UHSS to car bodies for weight lightening. Therefore, a variety of applied steel sheet to car bodies increased and the needs of simulation to evaluate weldability also increased in order to reduce the cost and time. In this study, resistance spot welding simulations for DP 780 Steel with 1.0 and 1.4 mm thickness were conducted with respect to lobe curve. 2 regression models to estimate tensile shear strength were suggested and they were second order polynomial regression model and optimized second order regression model. The performance of these models was evaluated in terms of the coefficient of determinant and average error rate.

Kinetic Modeling for Biosorption of Metylene Blue onto H3PO4 Activated Acacia arabica

  • Sivarajasekar, N.;Srileka, S.;Samson Arun Prasath, S.;Robinson, S.;Saravanan, K.
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.181-187
    • /
    • 2008
  • Batch sorption experiments were carried out for the removal of metylene blue from its aqueous solution using $H_3PO_4$ activated Acacia arabica carbon (AAC). The prepared activated carbon was characterized and was found as an effective adsorbent material. The operating variables studied were initial metylene blue concentration, AAC concentration and solution pH. AAC activated carbon posses a maximum sorption capacity for the range of initial dye concentrations studied (60~100 mg $L^{-1}$). The sorption kinetics were analyzed using reversible first order kinetics, second order, reversible first order, pseudo-first order, and pseudo-second order model. The sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The average pseudo-second order rate constant, $K_{II}$ and regression coefficient value were determined to be 0.0174 mg $g^{-1}$ $min^{-1}$ and 0.9977. The biosorption process also fit well to reversible I order kinetics with a regression coefficient of 0.9878.

Optimal designs for small Poisson regression experiments using second-order asymptotic

  • Mansour, S. Mehr;Niaparast, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.527-538
    • /
    • 2019
  • This paper considers the issue of obtaining the optimal design in Poisson regression model when the sample size is small. Poisson regression model is widely used for the analysis of count data. Asymptotic theory provides the basis for making inference on the parameters in this model. However, for small size experiments, asymptotic approximations, such as unbiasedness, may not be valid. Therefore, first, we employ the second order expansion of the bias of the maximum likelihood estimator (MLE) and derive the mean square error (MSE) of MLE to measure the quality of an estimator. We then define DM-optimality criterion, which is based on a function of the MSE. This criterion is applied to obtain locally optimal designs for small size experiments. The effect of sample size on the obtained designs are shown. We also obtain locally DM-optimal designs for some special cases of the model.

Implementation of Small Sized Designs for Economic Estimation of Second-Order Models (2차 모형의 경제적 추정을 위한 소형실험계획의 활용)

  • Kim, Jeong-Suk;Byeon, Jae-Hyeon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.531-534
    • /
    • 2006
  • Response surface methodology (RSM) is a useful collection of experimentation techniques for developing, improving, and optimizing products and processes. When we are to estimate second-order regression model and optimize quality characteristic by RSM, central composite designs and Box-Behnken designs are widely in use. However, in developing cutting-edge products, it is very crucial to reduce the time of experimentation as much as possible. In this paper small-sized second-order designs are introduced and their estimation abilities are compared in terms of D-optimality, A-optimality, and variance of regression coefficients, ease of experimentation, number of experiments. Then we present a guideline of using specific designs for specific experimentation circumstances. The result of this study will be beneficial to experimenters who face experiments which are expensive, difficult, or time-consuming.

  • PDF

Comparison of Small Sized Designs for Second-Order Modelling (2차 모형을 위한 소형 실험계획의 비교)

  • Kim Jeong-Suk;Byun Jai-Hyun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1085-1092
    • /
    • 2006
  • Response surface methodology(RSM) is a useful collection of experimentation techniques for developing, improving, and optimizing products and processes. When we are to estimate second-order regression model and optimize quality characteristic by RSM, central composite designs and Box-Behnken designs are widely in use. However, in developing cutting-edge products, it is very crucial to reduce the time of experimentation as much as possible. In this paper small-sized second-order designs are introduced and their estimation abilities are compared in terms of D-optimality, A-optimality, and variance of regression coefficients. The result of this study will be beneficial to experimenters who face experiments which are expensive, difficult, or time-consuming.

  • PDF

A MEASURE OF ROBUST ROTATABILITY FOR SECOND ORDER RESPONSE SURFACE DESIGNS

  • Das, Rabindra Nath;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.4
    • /
    • pp.557-578
    • /
    • 2007
  • In Response Surface Methodology (RSM), rotatability is a natural and highly desirable property. For second order general correlated regression model, the concept of robust rotatability was introduced by Das (1997). In this paper a new measure of robust rotatability for second order response surface designs with correlated errors is developed and illustrated with an example. A comparison is made between the newly developed measure with the previously suggested measure by Das (1999).

Assessment of Coal Combustion Safety of DTF using Response Surface Method (반응표면법을 이용한 DTF의 석탄 연소 안전성 평가)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.