• Title/Summary/Keyword: the precise integration algorithm

Search Result 35, Processing Time 0.029 seconds

A fast precise integration method for structural dynamics problems

  • Gao, Q.;Wu, F.;Zhang, H.W.;Zhong, W.X.;Howson, W.P.;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • A fast precise integration method (FPIM) is proposed for solving structural dynamics problems. It is based on the original precise integration method (PIM) that utilizes the sparse nature of the system matrices and especially the physical features found in structural dynamics problems. A physical interpretation of the matrix exponential is given, which leads to an efficient algorithm for both its evaluation and subsequently the solution of large-scale structural dynamics problems. The proposed algorithm is accurate, efficient and requires less computer storage than previous techniques.

Dynamic responses of a beam with breathing cracks by precise integration method

  • Cui, C.C.;He, X.S.;Lu, Z.R.;Chen, Y.M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.891-902
    • /
    • 2016
  • The beam structure with breathing cracks subjected to harmonic excitations was modeled by FEM based on Euler-Bernoulli theory, and a piecewise dynamical system was deduced. The precise integration method (PIM) was employed to propose an algorithm for analyzing the dynamic responses of the deduced system. This system was first divided into linear sub-systems, between which there are switching points resulted from the breathing cracks. The inhomogeneous terms due to the external excitations were tackled by introducing auxiliary variables to express the harmonic functions, hence the sub-systems are homogeneous. The PIM was then applied to solve the homogeneous sub-systems one by one. During the procedures, a predictor-corrector algorithm was presented to determine the switching points accurately. The presented method can provide solutions with an accuracy to a magnitude of $10^{-12}$ compared with exact solutions obtained by the theories of ordinary differential equations. The PIM results are much more accurate than Newmark ones with the same time step. Moreover, it is found that the PIM can maintain a high level of accuracy even when the time step increases within a relatively wide range.

Implementation of underwater precise navigation system for a remotely operated mine disposal vehicle

  • Kim, Ki-Hun;Lee, Chong-Moo;Choi, Hyun-Taek;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This paper describes the implementation of a precise underwater navigation solution using a multiple sensor fusion technique based on USBL, GPS, DVL and AHRS measurements for the operation of a remotely operated mine disposal vehicle (MDV). The estimation of accurate 6DOF positions and attitudes is the key factor in executing dangerous and complicated missions. To implement the precise underwater navigation, two strategies are chosen in this paper. Firstly, the sensor frame alignment to the body frame is conducted to enhance the performance of a standalone dead-reckoning algorithm. Secondly, absolute position data measured by USBL is fused to prevent cumulative integration error. The heading alignment error is identified by comparing the measured absolute positions with the DR algorithm results. The performance of the developed approach is evaluated with the experimental data acquired by MDV in the South-sea trial.

Geostatistical Downscaling of Coarse Scale Remote Sensing Data and Integration with Precise Observation Data for Generation of Fine Scale Thematic Information (고해상도 주제 정보 생성을 위한 저해상도 원격탐사 자료의 지구통계학기반 상세화 및 정밀 관측 자료와의 통합)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • This paper presents a two-stage geostatistical integration approach that aims at downscaling of coarse scale remote sensing data. First, downscaling of the coarse scale sedoncary data is implemented using area-to-point kriging, and this result will be used as trend components on the next integration stage. Then simple kriging with local varying means that integrates sparse precise observation data with the downscaled data is applied to generate thematic information at a finer scale. The presented approach can not only account for the statistical relationships between precise observation and secondary data acquired at the different scales, but also to calibrate the errors in the secondary data through the integration with precise observation data. An experiment for precipitation mapping with weather station data and TRMM (Tropical Rainfall Measuring Mission) data acquired at a coarse scale is carried out to illustrate the applicability of the presented approach. From the experiment, the geostatistical downscaling approach applied in this paper could generate detailed thematic information at various finer target scales that reproduced the original TRMM precipitation values when upscaled. And the integration of the downscaled secondary information with precise observation data showed better prediction capability than that of a conventional univariate kriging algorithm. Thus, it is expected that the presented approach would be effectively used for downscaling of coarse scale data with various data acquired at different scales.

Propagation of non-uniformly modulated evolutionary random waves in a stratified viscoelastic solid

  • Gao, Q.;Howson, W.P.;Watson, A.;Lin, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.213-225
    • /
    • 2006
  • The propagation of non-uniformly modulated, evolutionary random waves in viscoelastic, transversely isotropic, stratified materials is investigated. The theory is developed in the context of a multi-layered soil medium overlying bedrock, where the material properties of the bedrock are considered to be much stiffer than those of the soil and the power spectral density of the random excitation is assumed to be known at the bedrock. The governing differential equations are first derived in the frequency/wave-number domain so that the displacement response of the ground may be computed. The eigen-solution expansion method is then used to solve for the responses of the layers. This utilizes the precise integration method, in combination with the extended Wittrick-Williams algorithm, to obtain all the eigen-solutions of the ordinary differential equation. The recently developed pseudo-excitation method for structural random vibration is then used to determine the solution of the layered soil responses.

Implementation of Deep-sea UUV Precise Underwater Navigation based on Multiple Sensor Fusion (다중센서융합 기반의 심해무인잠수정 정밀수중항법 구현)

  • Kim, Ki-Hun;Choi, Hyun-Taek;Kim, Sea-Moon;Lee, Pan-Mook;Lee, Chong-Moo;Cho, Seong-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.46-51
    • /
    • 2010
  • This paper describes the implementation of a precise underwater navigation solution using a multi-sensor fusion technique based on USBL, DVL, and IMU measurements. To implement this precise underwater navigation solution, three strategies are chosen. The first involves heading alignment angle identification to enhance the performance of a standalone dead-reckoning algorithm. In the second, the absolute position is found quickly to prevent the accumulation of integration error. The third one is the introduction of an effective outlier rejection algorithm. The performance of the developed algorithm was verified with experimental data acquired by the deep-sea ROV, Hemire, in the East-sea during a survey of a methane gas seepage area at a 1,500 m depth.

Improvement of Relative Positioning Accuracy by Searching GPS Common Satellite between the Vehicles (차량 간 GPS 공통 가시위성 검색을 통한 상대위치 추정 정확도 향상에 대한 연구)

  • Han, Young-Min;Lee, Sung-Yong;Kim, Youn-Sil;Song, June-Sol;No, Hee-Kwon;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.927-934
    • /
    • 2012
  • In this paper, we present relative positioning algorithm for moving land vehicle using GPS, MEMS IMU and B-CDMA module. This algorithm does not calculate precise absolute position but calculates relative position directly, so additional infrastructure and I2V communication device are not required. Proposed algorithm has several steps. Firstly, unbiased relative position is calculated using pseudorange difference between two vehicles. Simultaneously, the algorithm estimates position of each vehicle using GPS/INS integration. Secondly, proposed algorithm performs filtering and finally estimates relative position and relative velocity. Using proposed algorithm, we can obtain more precise relative position for moving land vehicles with short time interval as IMU sensor has. The simulation is performed to evaluate this algorithm and the several field tests are performed with real time program and miniature vehicles for verifying performance of proposed algorithm.

Development of GPS/IMU/SPR Integrated Algorithm and Performance Analysis for Determination of Precise Car Positioning (정밀 차량 위치결정을 위한 GPS/IMU/SPR 통합 알고리즘 개발 및 성능 분석)

  • Han, Joong-Hee;Kang, Beom Yeon;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Based on the GPS/IMU integration, the car navigation has unstable conditions as well as drastically reduces accuracies in urban region. Nowadays, many cars mounted the camera to record driving states. If the ground coordinates of street furniture are known, the position and attitude of camera can be determined through SPR(Single Photo Resection). Therefore, an estimated position and attitude from SPR can be applied measurements in Kalman filter for updating errors of navigation solutions from GPS/IMU integration. In this study, the GPS/IMU/SPR integration algorithm was developed in loosely coupled modes through extended Kalman filters. Also, in order to analyze performances of GPS/IMU/SPR, simulation tests were conducted in GPS signal reception environments and the GCPs (Ground Control Points) distributions. In fact, the position and attitude gathered from GPS/IMU/SPR integration are more precise than the position and attitude from GPS/IMU integration. When IPs (image points), corresponded to GCPs, were concentrated in the center of image, the position error in the optical axis respectively increased. To understand effects from SPR, we plan to carry additional test on the magnitude of GCP, IP and initial exterior orientation errors.

Robust market-based control method for nonlinear structure

  • Song, Jian-Zhu;Li, Hong-Nan;Li, Gang
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1253-1272
    • /
    • 2016
  • For a nonlinear control system, there are many uncertainties, such as the structural model, controlled parameters and external loads. Although the significant progress has been achieved on the robust control of nonlinear systems through some researches on this issue, there are still some limitations, for instance, the complicated solving process, weak conservatism of system, involuted structures and high order of controllers. In this study, the computational structural mechanics and optimal control theory are adopted to address above problems. The induced norm is the eigenvalue problem in structural mechanics, i.e., the elastic stable Euler critical force or eigenfrequency of structural system. The segment mixed energy is introduced with a precise integration and an extended Wittrick-Williams (W-W) induced norm calculation method. This is then incorporated in the market-based control (MBC) theory and combined with the force analogy method (FAM) to solve the MBC robust strategy (R-MBC) of nonlinear systems. Finally, a single-degree-of-freedom (SDOF) system and a 9-stories steel frame structure are analyzed. The results are compared with those calculated by the $H{\infty}$-robust (R-$H{\infty}$) algorithm, and show the induced norm leads to the infinite control output as soon as it reaches the critical value. The R-MBC strategy has a better control effect than the R-$H{\infty}$ algorithm and has the advantage of strong strain capacity and short online computation time. Thus, it can be applied to large complex structures.

Precise Outdoor Localization of a GPS-INS Integration System Using Discrete Wavelet Transforms and Unscented Particle Filter (이산 웨이블릿 변환과 Unscented 파티클 필터를 이용한 GPS-INS 결합 시스템의 실외 정밀 위치 추정)

  • Seo, Won-Kyo;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.82-90
    • /
    • 2011
  • This paper proposes an advanced outdoor localization algorithm of a GPS(global positioning system)-INS(inertial navigation system) integration system. In order to reduce noise from the internal INS sensors, discrete wavelet transform and variable threshold method are utilized. The UPF (unscented particle filter) combines GPS information and INS signals to implement precise outdoor localization algorithm and to reduce noise caused by the acceleration, deceleration, and unexpected slips. The conventional de-noising method is mainly carried out using a low pass filter and a high pass filter which essentially result in signal distortions. This newly proposed system utilizes the vibration information of actuator according to fluctuations of the velocity to minimize signal distortions. The UPF also resolves non-linearities of the actuator and non-normal distributions of noises. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.