• Title/Summary/Keyword: the physiological system

Search Result 1,717, Processing Time 0.026 seconds

A Synthetic Human Sensibility Assessment System based on Psycho-physiological Evaluation (심리·생리 평가를 기반으로 한 통합 감성평가 시스템)

  • Chung, Soon-Cheol;Tack, Gye-Rae;Yi, Jeong-Han;Min, Byung-Chan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • Human sensibility is assessed by measuring and analyzing various physiological signals in an objective way, or by analyzing adjectives chosen by the subjects in a subjective way. The present study aims at developing an integrated human sensibility assessment system that measures changes in a person's objective and subjective sensibility in real-time and analyzes them in an integrative way. The present system is composed of a real-time subjective sensibility assessment system, an automatic subjective sensibility assessment system and a real-time physiological signal measurement and analysis system for sensibility assessment, which are separated from one another. It can be utilized individually, or can be combined as a synthetic sensibility assessment system for comprehensive sensibility assessment.

Manufacture of Custom IC and System for Multi-channel Biotelemeter (다채널 바이오텔레미터 개발을 위한 전용 IC 및 시스템 제작)

  • 서희돈;박종대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.172-180
    • /
    • 1994
  • Implantable biotelemetry systems are indispensable tools not only in animal research but also in clinical medicine as such systems enable the acquisition of otherwise unavailable physiological data. We present the manufacture of CMOS IC and its system for implantable multichannel biotelemeter system. The internal circuits of this system are designed not only to achieve as multiple functions and low power dissipation as possible but also to enable continuous measurement of physiological data. Its main functions are to enable continuous measurement of physiological data and to accomplish on-off power swiching of an implantable battery by receiving appropriate commanc signals from an external circuit. The implantable circuits of this system are designed and fabricated on a single silicon chip using $1.5\mu$m n-well CMOS process technology. The total power dissipation of implantable circuits for a continuous operation was 6.7mW and for a stand-by operation was 15.2$\mu$ W. This system used together with approriate sensors is expected to contribute to clinical medicine telemetry system of measuring and wireless transmitting such significant physiological parameters as pressure pH and temperature.

  • PDF

Effect of Slit Ventilation System in Sportswear on Physiological Responses (스포츠웨어의 슬릿 벤틸레이션 시스템이 인체 생리반응에 미치는 효과)

  • Yeon, Soo-Min;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • The purpose of this study was to investigate the effects of silt ventilation system on physiological responses. We measured rectal temperature, local skin temperature, clothing microclimate, blood pressure, heart rate, energy metabolism, body weight loss and subjective sensation during 70 minute, 50 min exercise period and 20 min rest period. The five women subjects randomly wore sportswear without slit ventilation system(NS sportswear) and sportswear with slit ventilation system(S sportswear) under the environmental condition of $25^{\circ}C$, 50%RH. The results of this study are as follows; Rectal temperature, mean skin temperature, clothing microclimate, blood pressure, heart rate, energy metabolism and body weight loss were significantly lower level in 'S sportswear'. In 'S sportswear', subjects replied less hot, less uncomfortable and less wet. Slit ventilation system can be used for bellow effect which is meaningful device of convection during exercise. We could find out that 'S sportswear' has advantage in physiological function.

Development of an Automatic Expert System for Human Sensibility Evaluation based on Physiological Signal (생리신호를 기반으로 한 자동 감성 평가 전문가 시스템의 개발)

  • Jeong, Sun-Cheol;Lee, Bong-Su;Min, Byeong-Chan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The purpose of this study was to develop an automatic expert system for the evaluation of human sensibility, where human sensibility can be inferred from objective physiological signals. The study aim was also to develop an algorithm in which human arousal and pleasant level can be judged by using measured physiological signals. Fuzzy theory was applied for mathematical handling of the ambiguity related to evaluation of human sensibility. and the degree of belonging to a certain sensibility dimension was quantified by membership function through which the sensibility evaluation was able to be done. Determining membership function was achieved using results from a physiological signal database of arousal/relaxation and pleasant/unpleasant that was generated from imagination. To induce one final result (arousal and pleasant level) based on measuring the results of more than 2 physiological signals and the membership function of each physiological signal. Dempster-Shafer's rule of combination in evidence was applied, through which the final arousal and pleasant level was inferred.

Classification of Three Different Emotion by Physiological Parameters

  • Jang, Eun-Hye;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.271-279
    • /
    • 2012
  • Objective: This study classified three different emotional states(boredom, pain, and surprise) using physiological signals. Background: Emotion recognition studies have tried to recognize human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 122 college students participated in this experiment. Three different emotional stimuli were presented to participants and physiological signals, i.e., EDA(Electrodermal Activity), SKT(Skin Temperature), PPG(Photoplethysmogram), and ECG (Electrocardiogram) were measured for 1 minute as baseline and for 1~1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state and 27 features were extracted from these signals. Statistical analysis for emotion classification were done by DFA(discriminant function analysis) (SPSS 15.0) by using the difference values subtracting baseline values from the emotional state. Results: The result showed that physiological responses during emotional states were significantly differed as compared to during baseline. Also, an accuracy rate of emotion classification was 84.7%. Conclusion: Our study have identified that emotions were classified by various physiological signals. However, future study is needed to obtain additional signals from other modalities such as facial expression, face temperature, or voice to improve classification rate and to examine the stability and reliability of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion recognition. Also, it can be useful in developing an emotion theory, or profiling emotion-specific physiological responses as well as establishing the basis for emotion recognition system in human-computer interaction.

Physiological Status Assessment of Locomotive Engineer During Train Operation

  • Song, Yong-Soo;Baek, Jong-Hyen;Hwang, Do-Sik;Lee, Jeong-Whan;Lee, Young-Jae;Park, Hee-Jung;Choi, Ju-Hyeon;Yang, Heui-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.324-333
    • /
    • 2014
  • In this study, physiological status of locomotive engineers were measured through EEG, ECG, EDA, PPG and respiration signals from 6 subjects to evaluate their arousal status during train operating. Existence of tunnels and mechanical vibration of train using 3-axes acceleration sensors were recorded simultaneously and were correlated with operator's physiological status. As the result of the analyzed subjects' physiological signals, mean SCR was increased in the section where more body movement is required. The RR interval was decreased before and after train stop due to the higher level of mental tension. The intensity of beta wave of EEG was found to be higher before and after train stop and tunnel section due to the increased mental arousal and tension. Therefore, it is expected that the outcomes of the physiological signals explored in this study can be utilized as the quantitative assessment methods for the arousal status to be used for sleepiness prevention system for vehicles operators which can greatly contribute to public transportation system safety.

Studies on the Physiological and Biochemical Effects of Korean Ginseng (고려인삼의 생리.생화학적 효과연구)

  • 정노팔;진승하
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.431-471
    • /
    • 1996
  • Korean ginseng has been thought and used the most very important medicinal herb among the oriental medicinal drugs for thounds of years Korean ginseng had many ingredients such as tripenoid saponins. Nitrogen compounds, polysaccharides, polyacetylenic compounds and lipid compounds. Korean ginseng has wide effects in the various systems of human such as nervous system. Vascular system. Digestive system. endocrine system, immune system. etc. Many researchess who were interested in the biological effects of Korean ginseng have concerned the tripenoid saponins among the components of ginseng and carried out to find the effects of ginseng using the various experimental system. From their results, it was unveiled many effects of Korean ginseng gractually in the experimental systems and shown that Korean ginseng has various effects in the biological system. But recent studies has been carried out to the difference ginseng components, besides ginseng saponin thought to have various effects in biological systems. Also the functional mechanism of ginseng in the biological system is limited but the basic research to elucidate the mysterious effects of ginseng has been preferred. In this review, we focus on biological effects of Korean ginseng. Especially physiological and biochemical aspects in biological systems.

  • PDF

Physiological Fuzzy Neural Networks for Image Recognition (영상 인식을 위한 생리학적 퍼지 신경망)

  • Kim, Kwang-Baek;Moon, Yong-Eun;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.81-103
    • /
    • 2005
  • The Neuron structure in a nervous system consists of inhibitory neurons and excitory neurons. Both neurons are activated by agonistic neurons and inactivated by antagonist neurons. In this paper, we proposed a physiological fuzzy neural network by analyzing the physiological neuron structure in the nervous system. The proposed structure selectively activates the neurons which go through a state of excitement caused by agonistic neurons and also transmit the signal of these neurons to the output layers. The proposed physiological fuzzy neural networks based on the nervous system consists of a input player, and the hidden layer which classifies features of learning data, and output layer. The proposed fuzzy neural network is applied to recognize bronchial squamous cell carcinoma images and car plate images. The result of the experiments shows that the learning time, the convergence, and the recognition rate of the proposed physiological fuzzy neural networks outperform the conventional neural networks.

  • PDF

The Implementation of The Multi-Subject, Multi-Channel Optical Telemetry System for Physiological Signals

  • Park, Cha-Hun;Park, Jong-Dae;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.448-454
    • /
    • 2000
  • This paper describes the implementation of a multi-subject, multi-channel optical telemetry system for the short range measurement of electrocardiograms (EKGs) a system which receives command signals and transmits physiological signals to the external system using LED (Light Emitting Diode) and PD (Photodiode). This system decreases the dependency of power supply voltage to the CMOS IC chips and a new enforced synchronization technique using infrared bi-directional communication has also been proposed. The telemetry IC with the size of $5.1{\times}5.1mm^2$ has the following functions: receiving of command signal, initialization of internal state of all functional blocks, decoding of subject selection signal, time division multiplexing of 4-channel modulated physiological signals, transmission of modulated signals to external system, and auto power down control.

  • PDF

Development and Evaluation of Advanced Telemetry System (개선된 텔레메트리 시스템 개발 및 평가)

  • 박차훈;서희돈;박종대
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.513-517
    • /
    • 2000
  • In this study, we fabricated the advanced telemetry system that transmitting media use radio frequency(RF) for the middle range measurement of the physiological signals and receiving media use optical for electromagnetic interference problem. The telemetry system within a size of 65$\times$125$\times$45mm consists of three parts: a RF transmitter, a optical receiver and a physiological signal processing CMOS one chip. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum which enables a comfortable bed-side telemetry system.

  • PDF