• Title/Summary/Keyword: the meteorological vision

Search Result 12, Processing Time 0.026 seconds

Climate Change, Meteorological Vision, and Literary Imagination (기후변화·기상학적 비전·문학적 상상력)

  • Shin, Moonsu
    • Journal of English Language & Literature
    • /
    • v.57 no.1
    • /
    • pp.3-25
    • /
    • 2011
  • As extremes of climate such as heavy storms, rainfalls, and droughts tend to be routine in recent years, global climate change becomes a serious concern not only for natural scientists but also for scholars of the human sciences. Efforts to tackle the anthropogenic climate change certainly require not only scientific knowledge about it but also a new sociocultural paradigm for valorizing and respecting nature in its own right. The huge casualties and mass destruction caused by recent climate disasters also remind us that nature has been an important factor to bring about changes in human history-a fact largely ignored in traditional history. This again validates the ecocritical request to prioritize place, physical setting, or the relationship characters hold with the natural world in understanding literary works. In this context this paper aims to demonstrate the importance of the meteorological vision in creating as well as understanding literary and cultural texts by examining such works as Shelley's "The Cloud," Byron's "Darkness," Keats's "To Autumn," all produced during the period of dramatic climate change including "the year without summer." It also briefly discusses Roland Emmerich's 2004 movie The Day after Tomorrow as a way of understanding recent cultural responses to the crisis of global warming.

Future Development Plans for the Next 60 Years of the Korean Meteorological Society (한국기상학회 향후 60년을 향한 미래 발전 방안)

  • Ki-Hong Min;June-Yi Lee;Seon-Ki Park;Kyung-Ja Ha;Yun Hong;Yongsoek Seo
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.297-306
    • /
    • 2023
  • Celebrating its 60th anniversary, this study suggests the future vision of the Korean Meteorological Society (KMS) for the next 60 years. The vision is "to advance atmospheric science and technology that contributes to human society as well as protect people from not only climate change risks but also weather, climate, and environmental disasters". Based on the suggestions from its members, this study proposes the KMS future development plan as follows. The first plan is to strengthen in leading the development and growth of atmospheric sciences in Korea, especially to improve weather, climate, and environment forecasts and to reduce uncertainty in future climate projections. The second is to enhance interaction not only among its members in academy, Korea Meteorological Administration and related organizations, meteorological industry, and science communicators but also with other related fields such as energy, water resources, agriculture, fishery, and forestry. The third is to enhance in nurturing young scientists by supporting domestic and international networks and training the state-of-the-art sciences, and to create opportunities for young scientists to advance into a wider field. The last is to expand its international activities for solving the challenges facing mankind, such as climate change risks and weather, climate, and environment disasters. The KMS should also continue the efforts to establish an integrative platform for leading fundamental and interdisciplinary research in weather, climate, and environment.

Development of a Wind Turbine Monitoring System using LabVIEW (LabVIEW를 이용한 풍력발전기 모니터링 시스템 개발)

  • 남윤수;김형기;유능수;이정완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.92-98
    • /
    • 2003
  • A wind turbine monitoring system is essential equipment fur the performance evaluation and mechanical load analysis of a wind turbine. A monitoring system using LabVIEW is developed in this study. This system monitors signals from a meteorological mast, wind turbine generator, and tower. The discrete signals which are sampled at t Hz are automatically saved on a data file in the unit of a day. Besides these basic functions, the developed monitoring system has the other several capabilities. One of them is the information access from a remote PC through the internet. A vision image of the test site area and data files that are produced by LabVIBW software can be uploaded to the main computer located in a remote site. An emergency backup system using UPS fur the power loss on the monitoring HW is also prepared, A detail explanation for the developed wind turbine monitoring system is presented in this study.

A Technique for Alignment to True North Based on Camera in Meteorological Installation (풍황 계측 타워 설치시 카메라를 사용한 진북 맞추기 기법)

  • Yoo Neung Soo;Nam Yoo Su;Lee Jeong Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.122-126
    • /
    • 2005
  • A technique for alignment to true north is presented based on synchronized measurements of vision image by a camera and output voltage of wind direction sensor. The true wind direction is evaluated by means of image processing techniques with least square sense, and then evaluated true value is compared with measured output voltage of the sensor. The uncertainty analysis about the component error for the proposed method in practical situation is performed. The proposed technique is applied to real meteorological tower (wind measuring tower) at the Daekwanryung test site. In addition, some uncertainty analysis of this method is presented.

Prediction of Defect Rate Caused by Meteorological Factors in Automotive Parts Painting (기상환경에 따른 자동차 부품 도장의 불량률 예측)

  • Pak, Sang-Hyon;Moon, Joon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.290-291
    • /
    • 2021
  • Defects in the coating process of plastic automotive components are caused by various causes and phenomena. The correlation between defect occurrence rate and meteorological and environmental conditions such as temperature, humidity, and fine dust was analyzed. The defect rate data categorized by type and cause was collected for a year from a automotive parts coating company. This data and its correlation with environmental condition was acquired and experimented by machine learning techniques to predict the defect rate at a certain environmental condition. Correspondingly, the model predicted 98% from fine dust and 90% from curtaining (runs, sags) and hence proved its reliability.

  • PDF

Research and Development for Atmospheric Sciences and Earthquake of Korea (기상.지진 R&D의 최근 동향 및 발전 방향)

  • Kim, Do-Yong;Oh, Jai-Ho;Lee, Chan-Goo;Hahm, In-Kyeong
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.455-462
    • /
    • 2007
  • Of late, natural disasters are becoming more frequent and the damages caused by these are quite substantial. All these are mainly due to a climate change. Many scientists from various countries are therefore engaged in research on atmospheric sciences and seismology. Korea meteorological administration (KMA) has established an advanced research and development center "CATER" for atmospheric sciences and earthquake. CATER has been managing and promoting the five major fields of research such as strategic meteorology, applied meteorology, climate change/countermeasure, earthquake, and research planning for CATER. Compared to 2006, CATER in 2007 has increased the funding by 7% and 5% for the climate change/countermeasure and the earthquake research fields, respectively. Also, the distribution rate of funding in 2007 has increased in 12% for basic research, 6% for university research organization, and 13% for the local area. CATER is trying to construct basic system and infrastructure for atmospheric sciences and earthquake research based on information technology. KMA has also a middle-term vision plan "World Best 365" for atmospheric science and earthquake research. These will give us a chance to become advanced nation in field of atmospheric sciences and seismology.

A Technique for Alignment to True North Using Image Processing (영상 선호 처리를 이용한 풍향센서의 진북맞추기)

  • Lee, Jeong-Wan;Nam, Yoon-Su;Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.67-72
    • /
    • 2002
  • A technique for alignment to true north is presented, based on synchronized measurements of vision image by a camera and output voltage of wind direction sensor. The true wind direction is evaluated by means of image processing techniques with least square sense, and then evaluated true value is compared with measured output voltage of the sensor. The proposed technique is applied to real meteorological tower m Daekwanryung test site. In addition, some uncertainty analysis of this method is presented.

  • PDF

On the Variability of the Ionospheric F2-Layer During the Quietest Days in December 2009

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.273-278
    • /
    • 2016
  • December 2009 was one of the quietest (monthly Ap=2) months over the last eight decades. It provided an excellent opportunity to study the day-to-day variability of the F2 layer with the smallest contribution due to geomagnetic activity. With this aim, we analyze hourly values of the F2-layer critical frequency (foF2) recorded at 18 ionosonde stations during the magnetically quietest (Ap=0) days of the month. The foF2 variability is quantified as the relative standard deviation of foF2 about the mean of all the "zero-Ap" days of December 2009. This case study may contribute to a more clear vision of the F2-layer variability caused by sources not linked to geomagnetic activity. In accord with previous studies, we find that there is considerable "zero-Ap" variability of foF2 all over the world. At most locations, foF2 variability is presumably affected by the passage of the solar terminator. The patterns of foF2 variability are different at different stations. Possible causes of the observed diurnal foF2 variability may be related to "meteorological" disturbances transmitted from the lower atmosphere or/and effects of the intrinsic turbulence of the ionosphere-atmosphere system.

The analysis of solar radiation to solar plant area based on UAV geospatial information system (UAV 공간정보 기반의 태양광발전소 부지의 일사량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.5-14
    • /
    • 2018
  • Recently the construction of solar plant showed a steady growth in influence of renewable energy policy. It is very important to determine the optimal location and aspect of solar panel using analyzed data of solar radiation to solar plant area beforehand. This study analyzed solar radiation in solar plant area using DEM acquired from UAV geospatial information. Mean solar radiation of 2017 was calculated as $1,474,466W/m^2$ and total solar radiation of 2017 considering solar plant area showed $33,639MW/m^2$ on analyzed result. It is important to analyze monthly solar radiation in aspect of maintenance works of solar plant. Monthly solar radiation of May to July was calculated over $160,000W/m^2$ and that of January to February and November to December showed under $80,000W/m^2$ in monthly solar radiation analysis of solar plant area. Also this study compared with solar radiation being calculated from UAV geospatial information and that of National Institute of Meteorological Sciences. And mean solar radiation of study area showed a little high in comparison with whole country data of National Institute of Meteorological Sciences, because the 93.7% of study area was composed of south aspect. Therefore this study can be applied to calculate solar radiation in new developed solar plant area very quickly using UAV.

Analysis of Misting Phenomenon in a Car (자동차 내부의 김 서림 현상에 관한 연구)

  • Kwak, Min-Kyoung;Kim, Jae-Hwan
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.109-114
    • /
    • 2007
  • The mist on the inside of an automobile windshield is not only uncomfortable but also very dangerous because it obstructs the driver's vision. However, the removal process of the mist has never been studied in detail. This study performed experiments analyzing the mechanism causes the mist in a car and investigated the appropriate removal process. The experiments were performed on two rainy days, 10 April 2006 and 26 May 2006, with temperature and relative humidity sensors of testo-175-H2 and DICKSON-TK500. We found a passenger increased water vapor by 0.2 g $min^{-1}$ through respiration and thereby relative humidity (RH) from 55% to 67% in 8 minutes. Even though RH was not saturated, misting occurred because the humid air contacted the colder surface of the window. To remove the mist, it is necessary to increase the temperature or inflow drier air in the car. Therefore, we expected that the heater would be more effective than air conditioner for this matter. However, the outcome was the other way around due to the structure of the heating and cooling system in the car. When the air-conditioner was on, colder and drier air was generated and flowed through the so-called evaporator. Droplets were produced in the evaporator due to cooling procedure. When the heater was on, the warm air evaporated the droplets and increased the water content in the air resulting in an increase of relative humidity. Consequently, the air conditioner is more effective than the heater to remove the mist.