• Title/Summary/Keyword: the length scale parameter

Search Result 194, Processing Time 0.219 seconds

Study on the Determination of Fire Protection Thickness based on Section Factor (강재의 단면형상에 따른 내화피복두께 산정 연구)

  • 정청운;지남용;권인규
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.139-142
    • /
    • 2003
  • Traditionally, the thickness of fire protection materials of structural elements such as beam and column have been decided by fire test using the predominant steel section of $H-300{\times}300{\times}10{\times}15$ for column and $H-400{\times}200{\times}8{\times}13$ for beam in Korea. But this way of determination of fire protection thickness yields very unduly results. Because the temperature-increment rate of structural steel elements depends mainly on magnitude of their cross-areas. In general, the thicker size of cross-areas for structural elements, the lower temperature shows up. It had already proved that the fire protection thickness only depends on the size of cross-areas and the fire protection method for three-fide or four-side exposed conditions in European countries, the United State of America and so on. To demonstrate there would be differences among various cross-areas for structural elements, we conducted several fire tests with full-scale specimens of beams and columns. For the determination of critical temperature for steel section when the fire resistant performance is needed to be decided, we conducted with a loaded fire test for beam and column, respectively. The small column in 1.0 meter length and beam in 1.5 meter length were used in order to deprive the rational fire protection thickness of structural elements such as beam and column, respectively. After test, we could obtain there were significant temperature lass between higher cross-areas and lower cross-areas. The critical temperature of steel as a criterion is used 538$^{\circ}C$ for column and 593$^{\circ}C$ for beam which is from ASTM E 119 because we don't make provisions as critical temperature by elements. We could consider that the best way of determination of fire protection thickness is using the following multi-regression equation which was deprived from several fire tests using the concept of section factor, FR(column) = 0.17 +5191.49t A/Hp + 40.77t, FR(beam) = 0.25 +6899.31t A/Hp + 32.60t(where, FR means fire resistant time, t means thickness, A means cross-area and Hp means heated parameter).

  • PDF

Sensitivity of Data Assimilation Configuration in WAVEWATCH III applying Ensemble Optimal Interpolation

  • Hye Min Lim;Kyeong Ok Kim;Hanna Kim;Sang Myeong Oh;Young Ho Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30° to 60° in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.

Comparison of Combustion Performance between Single Injector Combustor and Sub-scale Combustor (액체로켓엔진 연소기용 단일 분사기 연소기와 축소형 연수고 수류/연소시험 결과 비교)

  • Kim, Seung-Han;Han, Yeoung-Min;Seo, Seong-Hyeon;Moon, Il-Yoon;Lee, Kwang-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.451-454
    • /
    • 2006
  • This paper describes the results of cold flow test and hot firing tests of an uni-element coaxial swirl injector and hot firing tests of a subscale combustor, as to the development effort of coaxial swirl injector for high performance liquid rocket engine combustor. A major design parameter for coaxial swirl injector is the recess number of a bi-swirl injector. The results of hot firing tests of the uni-element injector combustor and the sub-scale combustor are analyzed to investigate the effect of the recess number influencing on the combustion performance and pressure fluctuation. The test results of a cold flow test of the unielement combustor shows that it was shown that the change in recess number has significant effect on mixing characteristics and efficiency, while the effect of recess number on atomization characteristic is not The results of a series of firing tests using unielement and subscale combustor show that the recess length significantly affects the hydraulic characteristics, the combustion efficiency, and the dynamics of the liquid oxygen/kerosene bi-swirl injector. As a point of combustion performance, combustion efficiencies are 90% for unielement combustor and 95% for subscale combustor. The difference in the characteristic velocities between the unielement combustor and the subscale combustor may be caused by the difference in thermal loss to the combustor wall and the relative lengths of the combustion chamber. For a mixed type coaxial swirl combustor, the pressure drop across the injector increases as recess number becomes larger. The low frequency pressure fluctuation observed in unielement combustor can be related to the propellant mixing characteristics of the coaxial bi-swirl injector. The effect of the recess number on the pressure fluctuation inside the combustion chamber is more significant in un i-element combustor than the subscale combustor, of which the phenomena are also observed in time domain and frequency domain.

  • PDF

ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with $U_o = 1500 km\;s^{-l}$ and the preshock gas temperature of $T_o = 10^4 - 10^8K$. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with $U_o = 75 - 1500 km\;s^{-l}$ and $T_o = 10^4K$. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is $t_{acc}\;{\propto}\;U_o^{-2}$. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, $\epsilon$, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', ${\phi}(M_s)$, for a wide range of shock parameters and for $\epsilon$ = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.

The Correlation between The Size and Location of Vocal Polyp and Voice Quality, Before and After Laryngeal Microsurgery (후두미세수술 전후 성대 용종의 크기 및 위치가 음성의 질의 변화에 미치는 영향)

  • Han, Won Gue;Kim, Min-Su;Oh, Kyung Ho;Woo, Jeung Soo;Jung, Kwang Yoon;Kwon, Soon Young
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.27 no.2
    • /
    • pp.102-107
    • /
    • 2016
  • Background and Objectives : Vocal polyps are caused by inflammation induced by stress or irritation. Many patients with vocal polyps complain voice discomfort. For vocal polyps, surgery such as laryngeal microsurgery has been the mainstay of management. We analyzed the clinical features of vocal polyps, and how the size and location of vocal polyps affect the outcomes of surgery. Methods : We retrospectively reviewed 42 patients from March 2014 to December 2015, who were diagnosed as unilateral single vocal polyp. When we operated on a vocal polyp with laryngeal microscopy, we measured their size and location. The quality of voice was evaluated by GRABS scale, jitter, shimmer, NHR (noise to harmonic ratio), MPT (maximum phonation time), and VHI (voice handicap index) before operation and 4 weeks after operation. Results : When we divided the patients into large-sized vocal polyp group (the longest length >3 mm) and small-sized vocal polyp group (the longest length ${\leq}3mm$), all parameter differences tend to be greater at large sized vocal polyp. However, these differences were not statistically significant (p>0.05). When we divided into two groups depending on the volume of vocal polyp, no distinct tendency was found. When we compared the location (anterior, mid and posterior) of vocal polyp with the improvement of voice quality, more change was found at mid portion vocal polyp, except the difference of VHI. However, these differences were also not statistically significant (p>0.05). Conclusion : All parameter differences tend to be greater at large vocal polyp and polyp of the mid location.

  • PDF

The Topology of Galaxy Clustering in the Sloan Digital Sky Survey Main Galaxy Sample: a Test for Galaxy Formation Models

  • Choi, Yun-Young;Park, Chang-Bom;Kim, Ju-Han;Weinberg, David H.;Kim, Sung-Soo S.;Gott III, J. Richard;Vogeley, Michael S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.82-82
    • /
    • 2010
  • We measure the topology of the galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey (SDSS DR7), examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr<-20.19 enables us to measure the genus curve with amplitude of G=378 at 6h-1Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10h-1Mpc reveals a mild scale-dependence for the shift and void abundance (A_V) parameters of the genus curve. We find strong bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which is also scale-dependent. The luminosity dependence of galaxy clustering topology discovered by Park et al. (2005) is confirmed: the distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. We find that galaxy clustering topology depends also on morphology and color. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter A_V depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations to generate mock galaxies: the Halo-Galaxy one-to-one Correspondence (HGC) model, the Halo Occupation Distribution (HOD) model, and three implementations of Semi-Analytic Models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color-dependence are usually correct in sign but incorrect in magnitude.

  • PDF

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Determination of the linear elastic stiffness and hygroexpansion of softwood by a multilayered unit cell using poromechanics

  • Gloimuller, Stefan;de Borst, Karin;Bader, Thomas K.;Eberhardsteiner, Josef
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.229-265
    • /
    • 2012
  • Hygroexpansion of wood is a known and undesired characteristic in civil engineering. When wood is exposed to changing environmental humidity, it adsorbs or desorbs moisture and warps. The resulting distortions or - at restrained conditions - cracks are a major concern in timber engineering. We herein present a multiscale model for prediction of the macroscopic hygroexpansion behavior of individual pieces of softwood from their microstructure, demonstrated for spruce. By applying poromicromechanics, we establish a link between the swelling pressure, driving the hygroexpansion of wood at the nanoscale, and the resulting macroscopic dimensional changes. The model comprises six homogenization steps, which are performed by means of continuum micromechanics, the unit cell method and laminate theory, all formulated in a poromechanical framework. Model predictions for elastic properties of wood as functions of the moisture content closely approach corresponding experimental data. As for the hygroexpansion behavior, the swelling pressure has to be back-calculated from macroscopic hygroexpansion data. The good reproduction of the anisotropy of wood hygroexpansion, based on only a single scalar calibration parameter, underlines the suitability of the model. The multiscale model constitutes a valuable tool for studying the effect of microstructural features on the macroscopic behavior and for assessing the hygroexpansion behavior at smaller length scales, which are inaccessible to experiments. The model predictions deliver input parameters for the analysis of timber at the structural scale, therewith enabling to optimize the use of timber and to prevent moisture-induced damage or failure.

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory

  • Mokhtar, Youcef;Heireche, Houari;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.397-405
    • /
    • 2018
  • In this paper, a novel simple shear deformation theory for buckling analysis of single layer graphene sheet is formulated using the nonlocal differential constitutive relations of Eringen. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal elasticity theory is employed to investigate effects of small scale on buckling of the rectangular nano-plate. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The results are verified with the known results in the literature. The influences played by Effects of nonlocal parameter, length, thickness of the graphene sheets and shear deformation effect on the critical buckling load are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.