• 제목/요약/키워드: the law temperature

검색결과 772건 처리시간 0.028초

A practical power law creep modeling of alloy 690 SG tube materials

  • Lee, Bong-Sang;Kim, Jong-Min;Kwon, June-Yeop;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2953-2959
    • /
    • 2021
  • A new practical modeling of the Norton's power law creep is proposed and implemented to analyze the high temperature behaviors of Alloy 690 SG tube material. In the model, both the stress exponent n and the rate constant B are simply treated as the temperature dependent parameters. Based on the two-step optimization procedure, the temperature function of the rate constant B(T) was determined for the data set of each B value after fixing the stress exponent n value by using the prior optimized function at each temperature. This procedure could significantly reduce the numerical errors when using the power law creep equations. Based on the better description of the steady-state creep rates, the experimental rupture times could also be well predicted by using the Monkman-Grant relationship. Furthermore, the difference in tensile strengths at high temperatures could be very well estimated by assuming the imaginary creep stress related to the given strain rate after correcting the temperature effects on the elastic modulus.

The impacts of thermophoresis via Cattaneo-Christov heat flux model

  • Ahmad, Manzoor;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Taj, Muhammad;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.255-262
    • /
    • 2022
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.

Experimental validation of simulating natural circulation of liquid metal using water

  • Lee, Min Ho;Jerng, Dong Wook;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1963-1973
    • /
    • 2020
  • Liquid metal-cooled reactors use various passive safety systems driven by natural circulation. Investigating these safety systems experimentally is more advantageous by using a simulant. Although numerous experimental approaches have been applied to natural circulation-driven passive safety systems using simulants, there has been no clear validation of the similarity law. To validate the similarity law experimentally, SINCRO-V experiment was conducted using Wood's metal and water for simulant of the Wood's metal. A pair of SINCRO-V facilities with length-scale ratio of 14.1:1 for identical Bo' was investigated, which was the main similarity parameter in temperature field simulation. In the experimental range of 0.2-1.0% of decay heat, the temperature distribution characteristics of the small water facility were very similar to that of the large Wood's metal facility. The temperature of the Wood's metal predicted by the water experiment showed good agreement with the actual Wood's metal temperature. Despite some error factors like discordance of Gr' and property change along the temperature, the water experiment predicted the Wood's metal temperature with an error of 27%. The validity of the similarity law was confirmed by the SINCRO-V experiments.

Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions

  • Zhang, Yaning;Cheng, Zhanbo;Lv, Huayong
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.97-109
    • /
    • 2019
  • Physical conditions play vital role on the mechanical properties of frozen soil, especially for the temperature and moisture content of frozen soil. Subsequently, they influence the subsidence and stress law of permafrost layer. Taking Jiangcang No. 1 Coal Mine as engineering background, combined with laboratory experiment, field measurements and empirical formula to obtain the mechanical parameters of frozen soil, the thick plate mechanical model of permafrost was established to evaluate the safety of permafrost roof. At the same time, $FLAC^{3D}$ was used to study the influence of temperature and moisture content on the deformation and stress law of frozen soil layer. The results show that the failure tensile stress of frozen soil is larger than the maximum tensile stress of permafrost roof occurring in the process of mining. It indicates that the permafrost roof cannot collapse under the conditions of moisture content in the range from 20% to 27% as well as temperature in the range from $-35^{\circ}C$ to $-15^{\circ}C$. Moreover, the maximum subsidence of the upper and lower boundary of the overlying permafrost layer decreases with the increase of moisture content in the range of 15% to 27% or the decrease of temperature in the range of $-35^{\circ}C$ to $-15^{\circ}C$ if the temperature or moisture content keeps consistent with $-25^{\circ}C$ or 20%, respectively.

화강암의 열 크립 거동에 관한 연구 (A Study on the Thermal Creep Behavior of Granite)

  • 장명환;양형식
    • 터널과지하공간
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 1998
  • In order to get the information of the deformational behavior of rock masses with time in waste disposal repository, it is necessary to measure the relationships between stress and strain and time for temperature. A creep law is used in conjunction with the elastic moduli to calculate stress and displacement following waste emplacement. Exponential-time law's parameters consist of stress and temperature. In this study, thermal creep test was carried out for Whangdeung granite. The measured creep deformation behavior was well explained by exponential time law and generalized Kelvin's rheological model. Mechanicla coefficients for exponential-time creep law showed the clear tendency of temperature dependent while those for Kelvein's model didn't.

  • PDF

Effect of Temperature Change on the Respiration Characteristics of Vegetables

  • Kawagoe, Yoshinori;Seo, Yasuhisa;Oshita, Sei-Ichi;Sagara, Yasuyuki
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.947-952
    • /
    • 1996
  • The effect of fluctuating temperature on the respiration of vegetables has been investigated. Spinach was selected as the experimental material because of its high respiratory activity and kept under the condition that temperature changed alternately at low and high levels every 4 hours. The low-high level temperature combination was set in $1-10^{\circ}C,{\;}1-20^{\circ}C{\;}and{\;}1-30^{\circ}C$. Respiration was evaluated in terms of quantity of $CO_2$ evolved from spinach. The evolution rate of $CO_2$ was determined by a change in its concentration. The evaluation rate of $CO_2$ followed closely the temperature change. In the temperature combinations at $1-10^{\circ}C{\;}and{\;}1-20^{\circ}C$, the relationship between $CO_2$ evolution rate and temperature was found to be able to express by Arrhenius law, while at $1-30^{\circ}C$, it did not obey the law.

  • PDF

A damage model predicting moderate temperature and size effects on concrete in compression

  • Hassine, Wiem Ben;Loukil, Marwa;Limam, Oualid
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.321-327
    • /
    • 2019
  • Experimental isotherm compressive tests show that concrete behaviour is dependent on temperature. The aim of such tests is to reproduce how concrete will behave under environmental changes within a moderate range of temperature. In this paper, a novel constitutive elastic damage behaviour law is proposed based on a free energy with an apparent damage depending on temperature. The proposed constitutive behaviour leads to classical theory of thermo-elasticity at small strains. Fixed elastic mechanical characteristics and fixed evolution law of damage independent of temperature and the material volume element size are considered. This approach is applied to compressive tests. The model predicts compressive strength and secant modulus of elasticity decrease as temperature increases. A power scaling law is assumed for specific entropy as function of the specimen size which leads to a volume size effect on the stress-strain compressive behaviour. The proposed model reproduces theoretical and experimental results from literature for tempertaures ranging between $20^{\circ}C$ and $70^{\circ}C$. The effect of the difference in the coefficient of thermal expansion between the mortar and coarse aggregates is also considered which gives a better agreement with FIB recommendations. It is shown that this effect is of a second order in the considered moderate range of temperature.

물-물 열펌프시스템에 관한 열역학 제1 및 제2 법칙 해석 (First and Second Law Analysis of Water-to-Water Heat Pump System)

  • 이세균;우정선;노정근
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.87-95
    • /
    • 2007
  • Thermodynamic analysis of water-to-water heat pump system based on the first and second law of thermodynamics is carried out in this study. This analysis shows the distribution of irreversibilities throughout the system components and informs us of a potential improvements with the temperature condition changes. Source water temperature($T_A$), utilization water temperature($T_D$) and temperature differences (${\Delta}T_{AB}$, ${\Delta}T_{CD}$) are important factors to affect system performances such as component irreversibilities, exergetic efficiency and COPH. Advantages and disadvantages with these factors are discussed. Second law optimization phenomena with $T_A$ and ${\Delta}T_{AB}$ are also indicated.

고온에서의 비선형 변형도를 고려한 콘크리트 구조물에서의 열응력 분포 (Thermal stress of concrete structure at high temperature considering inelastic thermal strain change)

  • 강석원;홍성걸;신영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1145-1150
    • /
    • 2000
  • Concrete behaves as ductile material at high temperature. The existing stress-strain relationship is not valid at high temperature condition. Thus, stress-strain curve of concrete at high temperature is re-established by modifying Saenz's suggestion in this study. A constitutive model of concrete subjected to elevated temperature is also suggested. The model consists of three components; free thermal stain, mechanical strain and thermal creep strain. As the temperature increase, the thermal creep becomes more critical to the failure of concrete. The thermal creep strain of concrete is derived from the modified power-law relation for the steady state creep. The proposed equation for thermal creep employs a Dorn's temperature compensated time theorem

  • PDF

원자력 발전소용 통신케이블 자켓의 가속열화시험 (An Accelerated Degradation Test of Nuclear Power Plants Communication Cable Jacket)

  • 정재한;김용수
    • 품질경영학회지
    • /
    • 제45권4호
    • /
    • pp.969-980
    • /
    • 2017
  • Purpose: The purpose of this study was to estimate the lifetime, and verify the target lifetime at steady state temperature, of communication cable jackets used in nuclear power plants. Method: This study was completed according to test and analysis methods required by international standards. After measuring the residual elongation(%) of specimens at specific points in time with the accelerated degradation test, average failure time of each temperature was computed. Thus, the activation energy could be derived by applying the temperature-Arrhenius law to estimate cable jacket lifetime at steady state temperature. Results: The cable jacket lifetime was estimated as 363.8 years assuming a normal nuclear power plant operating temperature of $90^{\circ}C$. Conclusion: To ascertain stable operating conditions for a nuclear power plant, accelerated degradation tests were performed according to the Arrhenius law for components of the nuclear power plants. The lifetime was estimated from the degradation data collected during the accelerated degradation test.