• Title/Summary/Keyword: the influence of wind

Search Result 887, Processing Time 0.032 seconds

Numerical investigation of the influence of structures in bogie area on the wake of a high-speed train

  • Wang, Dongwei;Chen, Chunjun;He, Zhiying
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.451-467
    • /
    • 2022
  • The flow around a high-speed train with three underbody structures in the bogie area is numerically investigated using the improved delayed detached eddy simulation method. The vortex structure, pressure distribution, flow field structure, and unsteady velocity of the wake are analyzed by vortex identification criteria Q, frequency spectral analysis, empirical mode decomposition (EMD), and Hilbert spectral analysis. The results show that the structures of the bogie and its installation cabin reduce the momentum of fluid near the tail car, thus it is easy to induce flow separation and make the fluid no longer adhere to the side surface of the train, then forming vortices. Under the action of the vortices on the side of the tail car, the wake vortices have a trend of spanwise motion. But the deflector structure can prevent the separation on the side of the tail car. Besides, the bogie fairings do not affect the formation process and mechanism of the wake vortices, but the fairings prevent the low-speed fluid in the bogie installation cabin from flowing to the side of the train and reduce the number of the vortices in the wake region.

Variation of Physical Characteristic of Tidal Flat's Environment by Water Level Change (수위변동에 따른 갯벌의 물리적 환경특성의 변화)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • This paper described the results of the characteristics of the near-bottom flow and field analysis of the tidal flats sediment. It was the aim of this paper to grasp current flow of tidal flat's environment and influence factor for environmental change forecast of tidal flats. Field measurement of water velocity, water elevation, bed materials test, and temperature distribution of tidal flat were conducted. Thereafter, current flow, turbidity and temperature distribution of tidal flat sediment have been discussed. The field research results showed that the fluctuating velocity near the seabed before and after its appearance at low tide was strongly affected by the wind wave. The resuspension of the sea-bottom sediment took place with great intensity before and after the appearance of the seabed at low tide. Both the sea water level and the weather condition were a significant influential factors. Such as, temperature and turbidity just on the surface and the shallow layer of seabed sediments were varied largely with time and weather conditions, but that its deeper layers was almost constant. Temperature on the seabed sediments was strongly influenced by irradiance and water depth. The temperature variation of the tidal flat and the variation characteristics of the current flow and turbidity depend greatly on the inhabiting environment of the tidal flat benthic organism.

  • PDF

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

Time-dependent analysis of cable trusses -Part II. Simulation-based reliability assessment

  • Kmet, S.;Tomko, M.;J., Brda
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.171-193
    • /
    • 2011
  • One of the possible alternatives of simulation-based time-dependent reliability assessment of pre-stressed biconcave and biconvex cable trusses, the Monte Carlo method, is applied in this paper. The influence of an excessive deflection of cable truss (caused by creep of cables and rheologic changes) on its time-dependent serviceability is investigated. Attention is given to the definition of the basic random variables and their statistical functions (basic, mutually dependent random variables such as the pre-stressing forces of the bottom and top cable, structural geometry, the Young's modulus of elasticity of the cables, and the independent variables, such as permanent load, wind, snow and thermal actions). Then, the determination of the response of the cable truss to the loading effects, and the definition of the limiting values considering serviceability of the structure are performed. The potential of the method, using direct Monte Carlo technique for simulation-based time-dependent reliability assessment as a powerful tool, is emphasized. Results obtained by the First order reliability method (FORM) are compared with those obtained by the Monte Carlo simulation technique.

A Study on the Aerodynamic Characteristic of Gunfire Damaged Airfoil (화포에 의해 손상된 날개의 공력특성에 관한 연구)

  • Lee, Ki-Young;Chung, Hyoung-Seog;Kim, Si-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.144-151
    • /
    • 2008
  • An experimental study has been conducted to investigate the effects of circular damage hole on the characteristics of airfoil performance. The damage on a wing created from a hit by anti-air artillery was modeled as a circular hole. Force balance measurements and static pressure measurements on the wing surface were carried out for the cases of having damage holes of 10% chord size at quarter chord and/or half chord positions. All experiments were conducted at Reynolds number of $2.85\times10^5$ based on the chord length. The surface pressure data show big pressure alterations near the circular damage holes. This abnormal surface pressure distribution produces shear stress that could lead to the acceleration of the structural degradation of the wing around the circular damage hole. However, in spite of the existence of circular damage holes, the measured force data indicated the only a slight decrease in lift accompanied by increase in drag compared to the results of undamaged one. The influence of damage hole on the aerodynamic performance was increased as the location of damage moved to the leading edge. The effect on the control force was insignificant when the damaged size was not large.

Aerostatic pressure of streamlined box girder based on conformal mapping method and its application

  • Wu, Lianhuo;Ju, J. Woody;Zhang, Mingjin;Li, Yongle;Qin, Jingxi
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.243-253
    • /
    • 2022
  • The conformal mapping method (CMM) has been broadly exploited in the study of fluid flows over airfoils and other research areas, yet it's hard to find relevant research in bridge engineering. This paper explores the feasibility of CMM in streamlined box girder bridges. Firstly, the mapping function transforming a unit circle to the streamlined box girder was solved by CMM. Subsequently, the potential flow solution of aerostatic pressure on the streamlined box girder was obtained and was compared with numerical simulation results. Finally, the aerostatic pressure attained by CMM was utilized to estimate the aerostatic coefficient and flutter performance of the streamlined box girder. The results indicate that the solution of the aerostatic pressure by CMM on the windward side is satisfactory within a small angle of attack. Considering the windward aerostatic pressure and coefficient of correction, CMM can be employed to estimate the rate of change of the lift and moment coefficients with angle of attack and the influence of the geometric shape of the streamlined box girder on flutter performance.

Phytomonitoring of the Genotoxicity of Environmental Pollutants: An Application to Armenian Nuclear Power Plant

  • Kim, Jin Kyu;Aroutiounian, Rouben M.;Nebish, Anna A.;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.181-185
    • /
    • 2015
  • Today the biosafety evaluation, a common problem of vital importance, is based on internationally proved test-systems, standards and techniques. The paradigm of biosafety includes multidisciplinary approach, a combination of physical, chemical and biological tests to monitor the environmental level of pollutants and needs to be improved by modern approaches. The genetic risk of environmental pollutions has long been studied by many researchers. In this study, used was the known sensitive plant test-system, clones of plant Tradescantia (spiderwort) able to detect gene mutations (frequency of mutational events and formation of micronuclei) in combination with chemical and, in some instances, with radiological measurements. In addition, male gametophyte generation of fruit trees was applied as bioindicators of genotoxicity. The obtained results did not show any significant increase along with wind direction. As for the male gametophyte assay, the fertility of the investigated fruit-trees near to NPP did not significantly differ from that of the control point. The influence of the NPP on the male generative system of the investigated taxa of fruit trees for the investigated year was not revealed. The system described needs to be expanded by species of interest (human) as there is a difficulty to transfer the revealed dose correlations to humans. The development of this idea includes various levels: population (epidemiological studies), individual, cellular, molecular (DNA), etc.

A study on the stability of a crab trap fishing boat with water tank experiment (수조 실험에 의한 게 통발 어선의 복원성에 관한 연구)

  • Lee, A-Reum;Kang, Il-Kwon;Jo, Hyo-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.4
    • /
    • pp.267-275
    • /
    • 2009
  • According to the recent statistics of marine casualties in Korea, fishing boats are more likely to be ended in the casualties, and small fishing boats especially cause much more accidents in sinking and capsizing than any other big vessels. These casualties were mainly produced from the ignorance on the lack of own ship stability. From this view, this study aims to analyze the characteristics of stability on the crab trap fishing boat receiving transverse wave by means of carrying out the water tank test. The rolling angle of the model ship was affected largely with the displacement and the wave period of it, and the trends were shown that the magnitude of the angle was proportional to the displacement, but inversely to the wave period. And the wave height had effect on the rolling angle just in the specific range of the wave period. The force of steady wind didn't have influence on the rolling variation significantly.

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Gyroscopic Stability and Drag Characteristics Study of Canard-Installed Course Correction Munition (조종날개가 장착된 탄도수정탄의 자이로안정성 및 항력 특성 연구)

  • Bae, Ju Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-383
    • /
    • 2017
  • This paper describes the gyroscopic stability and the drag characteristics of the smart munition with a course correction fuze(CCF). A ballistic analysis was conducted to figure out the effect of the canards on the gyroscopic stability of the projectile. The analysis used the commercial ammunition performance evaluation software: Projectile Design and Analysis System(PRODAS). In particular, we compared the PRODAS analysis results to real field test results to investigate the influence of the CCF mounted projectile. In addition, some ballistic simulations were carried out to provide the conditions suitable for wind tunnel tests. Experimental results show that the added drag force by the canards is almost uniform regardless of the Mach number when the projectile is at the normal position where the angle of rotation and the angle of attack are both 0 degrees. However, as the angle of attack of the projectile increases, the additional drag force depends on the deflection of the canards.