• Title/Summary/Keyword: the influence of wind

Search Result 887, Processing Time 0.022 seconds

A Study on the Influence of the Base Region Modeling on the Aerodynamic Characteristics of a Launch Vehicle Using CFD (CFD에 의한 발사체 공력특성에 미치는 기저부 영역 모델링의 영향에 관한 연구)

  • Kim, Young-Hoon;Ok, Ho-Nam;Kim, In-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.27-33
    • /
    • 2005
  • This research presents the influence of the base region modeling on the aerodynamic characteristics of a launch vehicle using CFD. The vicinity of a launch vehicle is divided into four zones, and four computational cases are made using these four zones. The aerodynamic coefficients are predicted for the angle-of-attack of 6 degrees and Mach numbers ranging from 0.4 to 2.86. It was found that modeling of the base region should not be neglected for the prediction of the aerodynamic characteristics of a launch vehicle in subsonic and transonic regions. It was also found that the modeling of the sting support used in the wind tunnel test is necessary to get a better agreement with the experiments.

A New Proposition on the Definition of the Tropical Cyclone Influence on the Korean Peninsula (한반도 영향 태풍의 정의에 대한 새로운 제안)

  • Kwon, H. Joe;Rhyu, Jae-Young
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • A new proposition on the definition of the tropical cyclone (TC) which influences the Korean Peninsula (KP) is presented. The definition is based upon the TC track and intensity, 34 wind swath considering the TC size, and the line of 200 nautical mile (NM) from the KP shore which is the boundary of the official warning of Korea Meteorological Administration. Four types are proposed. First type is TC that hits the KP inland. Second is TC that falls within the 200-NM boundary. Third type is TC that passes outside the 200-NM boundary but large enough to significantly influence the KP. Last, the cases for a TC which are downgraded to the midlatitude cyclone and hit the KP are included. 30-year reanalysis reveals that 21 tropical cyclones should be included in the TC list that influenced the KP during the period from 1977 to 2006, which corresponds to 3.93 TCs per year. Among them, number of type I, II, III and IV TCs turn are to be 36, 47, 10, and 16, respectively. The net increase found in the current reanalysis is 2, 5, 7, and 7 for each type.

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.

A Study on the Contamination of Photovoltaic Cells by Fine Dust in the Air (공기 중의 미세먼지에 의한 태양전지의 오염에 관한 연구)

  • HAN, JIN MOK;CHOI, SOOKWANG;KIM, SEWOONG;JUNG, YOUNGUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.3
    • /
    • pp.292-298
    • /
    • 2018
  • The contamination of photovoltaic (PV) cells reduces the incidence of sunlight and reduces the power generation output of PV cells. The main factor influencing the contamination of PV cells installed outdoors is the fine dust in the air, but the influence of temperature, humidity, rain and wind can be considered. In this paper, experiments on the contamination of PV cells according to the fine dust density, the temperature and humidity of air were investigated. As results of this study, the contamination area of PV cells increases with contamination time and cumulative fine dust density in the air. The contamination of PV cells increases when the temperature is low and the humidity is high. Also, as the contamination of PV cells is affected to the wind, the deviation of contamination area is happened.

Laboratory investigation of the effects of translation on the near-ground tornado flow field

  • Razavi, Alireza;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.179-190
    • /
    • 2018
  • Translation of tornadoes is an important feature in replicating the near-ground tornado flow field which has been simulated in previous studies based on Ward-type tornado simulators using relative motion of the ground plane. In this laboratory investigation, effects of translation on the near-ground tornado flow field were studied using the ISU Tornado Simulator that can physically translate over a ground plane. Two translation speeds, 0.15 m/s and 0.50 m/s, that scale up to those corresponding to slowly-moving tornadoes in the field were selected for this study. Compared with the flow field of a stationary tornado, the simulated tornado with translation had an influence on the spatial distribution and magnitude of the horizontal velocities, early reversal of the radial inflow, and expansion of the core radius. Maximum horizontal velocities were observed to occur behind the center of the translating tornado and on the right side of its mean path. An increase in translation speed, resulted in reduction of maximum horizontal velocities at all heights. Comparison of the results with previous studies that used relative motion of the ground plane for simulating translating tornadoes, showed that translation has similar effects on the flow field at smaller radial distances (~2 core radius), but different effects at larger radial distances (~4 core radius). Further, it showed that the effect of translation on velocity profiles is noticeable at and above an elevation of ~0.6 core radius, unlike those in studies based on the relative motion of the ground plane.

A Numerical Modeling Study on the Seasonal Variability in the Gulf of Alaska (알라스카 만의 계절변화에 대한 수치모형 실험)

  • Bang, In-Kweon;Zygmunt Kowlik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.309-325
    • /
    • 1994
  • Ocean circulation in the Gulf of Alaska is remarkably constant throughout the year despite of being forced by one of the largest seasonal wind stresses in the world. To explain the small seasonal changes in the transport of Alaska Stream. a set of numerical models is employed. First a diagnostic approach is applied to reproduce circulation from the observed density structure. The results reveals the very small seasonal changes in the Alaska Stream transport. Next a series of the prognostic models is used: a barotropic model. a flat bottom baroclinic model, and baroclinic model with topography. These models reveal the influence of topography and baroclinicity on the ocean's response to the seasonal wind forcing. The intercomparisons of the various model results suggest that the seasonal response of the baroclinic ocean is primary barotropic and the resultant barotropic circulation is weakened by the scattering effect of the bottom topography.

  • PDF

Isolation Performance of the Single-Sided air Curtain in Air-Conditioned Space (공조공간에서 수평토출형 에어커튼의 차단 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.806-812
    • /
    • 2012
  • Air curtains are widely used in commercial and public buildings to replace solid doors where traffic of people is predicted. At doorways where the solid door is open continuously or intermittently, an air curtain may be installed in order to reduce the flow of heat and moisture from the enclosed space to the outside. The purpose of this paper is to predict isolation performance of the single-sided air curtain when the wind is blowing. For the study, a numerical simulation is used to find the influence of various jet velocities on the efficiency of the single-sided air curtain device which is mounted at the side of the doorway. The isolation performance of the single-sided air curtain is evaluated by sealing efficiency which provides the assessment of the infiltration air ratio. According to the result of this study, the single-sided air curtain has lower sealing efficiency than downward-blowing air curtain. Therefore, for energy conservation in heating space, the single-sided air curtain is not recommended because of its low effectiveness.

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

The Influence of Opposing Flow and Its Separation of SBF over Masan on Southeast Coast of the Korea

  • Ji, Hyo-Eun;Lee, Kwi-Ok;Lee, Soon-Hwan;Park, Soon-Young;Jeon, Won-Bae;Lee, Hwa-Woon
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.216-227
    • /
    • 2011
  • A Sea breeze front (SBF) appears clear particularly if there is opposing wind, and the convergence zone along a SBF affects air quality in coastal areas. This study analyzes features of SBF separation in the presence of an opposing flow in the southeastern coastal area of Korea Peninsula. Using a Regional Atmospheric Modeling System (RAMS) numerical simulation and an opposing flow, two types of SBF were observed at Masan coastal area of Korea. In one, the SBF penetrated inland despite of the opposing flow at Jinhae (1100 LST), Wondong (1700 LST), Saenglim (1700 LST), and Miryang (1700 LST). In the other, the SBF remained on the coastline along with Jinhae (1100 LST), Masan (1400 LST), Jinbuk (1400 LST), and Gaecheon (1700 LST), because the inflow of the sea breeze was not sufficient to penetrate inland against the opposing flow. This study shows that SBFs are affected by the formation of an opposing flow, as well as the inflows of a sea breeze and the opposing flow.

Changed Relationship between Snowfall over the Yeongdong region of the Korean Peninsula and Large-scale Factors

  • Cho, Keon-Hee;Chang, Eun-Chul
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.182-193
    • /
    • 2017
  • A typical snowfall pattern occurs over the east coastal region of the Korean Peninsula, known as the Yeongdong region. The precipitation over the Yeongdong region is influenced by the cold and dry northeasterly wind which advects over warm and moist sea surface of the East Sea of Korea. This study reveals the influence of large-scale factors, affecting local to remote areas, on the mesoscale snowfall system over the Yeongdong region. The National Centers for Environmental Prediction-Department of Energy reanalysis dataset, Extended Reconstructed sea surface temperature, and observed snowfall data are analyzed to reveal the relationship between February snowfall and large-scale factors from 1981 to 2014. The Yeongdong snowfall is associated with the sea level pressure patterns over the Gaema Plateau and North Pacific near the Bering Sea, which is remotely associated to the sea surface temperature (SST) variability over the North Pacific. It is presented that the relationship between the Yeongdong snowfall and large-scale factors is strengthened after 1999 when the central north Pacific has warm anomalous SST. These enhanced relationships explain the atmospheric patterns of recent strong snowfall years (2010, 2011, and 2014). It is suggested that the newly defined index in this study based on related SST variability can be used for a seasonal predictor of the Yeongdong snowfall with 2-month leading.