• Title/Summary/Keyword: the influence of wind

Search Result 887, Processing Time 0.026 seconds

Study of estimated model of drift through real ship (실선에 의한 표류 예측모델에 관한 연구)

  • Chang-Heon LEE;Kwang-Il KIM;Sang-Lok YOO;Min-Son KIM;Seung-Hun HAN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.57-70
    • /
    • 2024
  • In order to present a predictive drift model, Jeju National University's training ship was tested for about 11 hours and 40 minutes, and 81 samples that selected one of the entire samples at ten-minute intervals were subjected to regression analysis after verifying outliers and influence points. In the outlier and influence point analysis, although there is a part where the wind direction exceeds 1 in the DFBETAS (difference in Betas) value, the CV (cumulative variable) value is 6%, close to 1. Therefore, it was judged that there would be no problem in conducting multiple regression analyses on samples. The standard regression coefficient showed how much current and wind affect the dependent variable. It showed that current speed and direction were the most important variables for drift speed and direction, with values of 47.1% and 58.1%, respectively. The analysis showed that the statistical values indicated the fit of the model at the significance level of 0.05 for multiple regression analysis. The multiple correlation coefficients indicating the degree of influence on the dependent variable were 83.2% and 89.0%, respectively. The determination of coefficients were 69.3% and 79.3%, and the adjusted determination of coefficients were 67.6% and 78.3%, respectively. In this study, a more quantitative prediction model will be presented because it is performed after identifying outliers and influence points of sample data before multiple regression analysis. Therefore, many studies will be active in the future by combining them.

Structural Model Test for Strength Performance Evaluation of Fairlead Chain Stopper Installed on MW Class Floating Type Offshore Wind Turbine (메가와트급 부유식 해상풍력발전기용 페어리드 체인 스토퍼의 강도 성능평가를 위한 구조 모형 시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.421-431
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing due to the influence of global warming. In a situation where the installation of floating wind turbines is increasing around the world, concerns about the huge loss and collapse of floating offshore wind turbines due to strong typhoons are deepening. Regarding to the safe operation of the floating offshore wind turbine, the development of a new type of disconnectable mooring system is required. A new fairlead chain stopper considered in this study is devised to more easily attach or detach the floating offshore wind turbine with mooring lines comparing to other disconnectable mooring apparatuses. In order to investigate the structural safety of the initial design of fairlead chain stopper that can be applied to MW-class floating type offshore wind turbine, scale-down structural models were produced using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by performing the tensile tests. The finite element analysis of fairlead chain stopper was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the finite element analysis, the structural weak parts on the fairlead chain stopper were reviewed. The structural model tests were performed considering the main load conditions of fairlead chain stopper, and the test results were compared to the finite element analysis. Through the results of this study, it was possible to experimentally verify the structural safety of the initial design of fairlead chain stopper. It is also judged that the study results can be usefully used to improve the structural strength of fairlead chain stopper in a detailed design stage.

On the Characteristics of Vertical Atmospheric Structure in the Western Coastal Region through the Intensive Observation Period (집중관측을 통한 서해연안의 대기 수직구조 특성)

  • 문승의;노재식
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.335-348
    • /
    • 1998
  • The intensive meteorological observations including pibal balloon at Ungcheon, airsonde and 10m meteorological tower observations at Gulup-Do, where are located In the western coastal region, are taken to Investigate the characteristics of the upper and lower atmospheric structure and the local circulation pattern during the period of 17 to 22 September 1996. The diurnal variations of weather elements(i.e. air temperature, humidity, pressure, and Und speeds at Gulup-Do are analyzed and discussed with those at four inland meteorological stations. The vertical profiles of wind vector, ortho- gonality(Ω), and shear obtained from the pibal obsenrations are also presented to examine the change of wand structure according to the synoptic-scale pressure system's movement. The diurnal temperature changes at Gulup-Do are more sensitive than that of Inland meteorological stations In case of the mow of southwesterlies but are not dominant due to the ocean effect under the Influence of relatively cold northerlies. A well defined mixed layer Is developed from the 500m to the maximum 1700m with a significant capping Inversion layer on the top of it. It can be found from the vertical profiles of wind vector that the wind become generally strong at the interface heights between cloud lay- ers and non-cloud layers. The maximum Und shear Is appeared at the bel각t where the varlauon of wand direction Induced by the passage of synoptic-scale pressure system Is accompanied with the In- crease of Und speed. Based on the wind orthogonality, the change of wind direction with height is more complicated In cloudy day than In clear day. In case of a fair weather, the change of wand direction is showed to be at around 2km.

  • PDF

Relation between P-D value of Autopilot and Transfer Distance under Wind Pressure

  • Seong, Yu-Chang
    • Journal of Navigation and Port Research
    • /
    • v.32 no.4
    • /
    • pp.271-277
    • /
    • 2008
  • When performing steering by an autopilot (automatic steering gear), a sensitivity adjustment is mainly determined by P value and D value. These values differ in the optimal combination by model of ship and external forces. This research was carried out simulation case studies and examined movement of Pure Car Carrier, which easily received ship by wind pressure influence in low speed We investigated the relation of horizontal migration(transfer) of ship's body and P-D value. Based on it, four parameters of P-D at approaching berth could be suggested Hence there were suggestions of parameters; Distance to maximum lee point, Time to maximum lee point, Time to return to original course and Time to 300th second. The correlation of these parameters and P-D value were also considered. As a result, we think that this index, like formulated P-D, leads to an easy and safe navigation by utilizing these indices.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Structural Vibration Characteristics of a MW-Class Wind Turbine Tower Considering Earthquake Base Excitation (지진기반 가진효과를 고려한MW 급 풍력발전기 타워의 구조진동 특성연구)

  • Kim, Dong-Man;Park, Kang-Kyun;Kim, Dong-Hyun;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.616-620
    • /
    • 2009
  • Modern wind turbines have been mainly erected in region where earthquake are rare or normally weak, especially Korea was thought as safety zone from earthquake. But recently, the earthquake occurs more and more frequently. So, the wind turbine design is required the structural and functional stability under the earthquake. The earthquake can influence normal operation, even if a weak earthquake. There are two ways to review the design under earthquake using Computer Applied Engineering (CAE). One is the Response Spectrum Analysis (RSA) the other is Time History Analysis (THA). In this research, dynamic response on time is obtained under the earthquake by taking into account ground accelerogram consistent with the relevant standards applied to the turbine foundation.

  • PDF

Dynamic analysis of long-span cable-stayed bridges under wind and traffic using aerodynamic coefficients considering aerodynamic interference

  • Han, Wanshui;Liu, Huanju;Wu, Jun;Yuan, Yangguang;Chen, Airong
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.405-430
    • /
    • 2017
  • The aerodynamic characteristics of vehicles are critical to assess vehicle safety and passenger comfort for vehicles running on long span bridges in a windy environment. However, in previous wind-vehicle-bridge (WVB) system analysis, the aerodynamic interference between the vehicle and the bridge was seldom considered, which will result in changing aerodynamic coefficients. In this study, the aerodynamic coefficients of a high-sided truck on the ground (ground case) and a typical bridge deck (bridge deck case) are determined in a wind tunnel. The effects of existent structures including the bridge deck and bridge accessories on the high-sided vehicle's aerodynamic characteristics are investigated. A three-dimensional analytical framework of a fully coupled WVB system is then established based on the finite element method. By inputting the aerodynamic coefficients of both cases into the WVB system separately, the vehicle safety and passenger comfort are assessed, and the critical accidental wind speed for the truck on the bridge in a windy environment is derived. The differences in the bridge response between the windward case and the leeward case are also compared. The results show that the bridge deck and the accessories play a positive role in ensuring vehicle safety and improving passenger comfort, and the influence of aerodynamic interference on the response of the bridge is weak.

Evaluation of Wind Force Coefficients of a Box-Type Girder Bridge with Noise Barriers (방음벽의 유무에 따른 박스형 거더교의 풍력계수 평가)

  • Jeong, Seung Hwan;Lee, Youngki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.627-634
    • /
    • 2018
  • In the study, computational fluid dynamics analysis was performed to estimate wind force coefficients for a box-type concrete girder bridge under the influence of wind. The drag, lift and pitching moment coefficients were obtained for the bridge section without noise barrier and compared with those of the bridge section with noise barriers of various heights. The shear stress transport $k-{\omega}$ turbulence model was employed to estimate the wind force coefficients, and the contribution of the friction drag force to the total drag force was investigated. It was found from the study that the drag force coefficients increased as the height of noise barrier increased when a wind blew horizontally, and that the contribution of the friction drag force was highest for the bridge section without noise barrier. It is concluded that the impact of the height of noise barriers should be considered in the design of bridges, and the friction force played an important role in evaluating wind forces on bridges.

Coherent Structures beneath Wind-Generated Deepwater Waves (심해 풍파 아래에서의 응집 구조)

  • Oh, Sang-Ho;Suh, Kyung-Duck;Mizutani, Natsuki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.16-28
    • /
    • 2007
  • The results of experimental investigation of coherent structures beneath wind-generated waves in deep water are presented. Vorticity fields of deepwater wind waves were visualized by analyzing the velocity fields obtained by PIV measurements under different wind and fetch conditions. In addition, spatio-temporal evolution of the coherent structures and subsequent changes in vertical profiles of the instantaneous vorticity were qualitatively examined. It was found that a coherent structure is formed right underneath the wave crest and traveled in phase with the surface wave. The direction of rotation of the coherent structure was contrary to the wave orbital motion when wind speed is less than 10 m/s, while was same as the wave orbital motion when wind speed is approximately 13 m/s and wave breaking occurs at the wave crest. In the near-surface region, complex vortex-vortex interactions were observed according to the traveling of the coherent structure. In contrast, coherent structures far below the water surface changed little due to weak influence of orbital motion by the surface waves.

Comparison of EU-DEMO React & Wind Nb3Sn TF CICC current sharing temperature against Wind & React Nb3Sn CICCs

  • Kwon, Soun P.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.7-18
    • /
    • 2022
  • European efforts to design superconducting conductors for a future tokamak have involved Nb3Sn cable-in-conduit conductor (CICC). Nb3Sn coils which undergo heat treatment to activate the Nb3Sn material are mostly produced through the wind-then-react route. However, some Nb3Sn coils have been proposed with CICCs of the react-then-wind route. The latter CICCs are physically constrained due to handling limitations which if not adhered to will result in irrecoverable damage to the Nb3Sn cable inside, nullifying any performance advantage. A group at the Swiss Plasma Center has proposed such CICC designs, constructing samples and testing them for performance. The characteristics and performance of these react & wind (R&W) CICCs are compared with the more common wind & react (W&R) CICCs, and it is found that the R&W designs show more extreme characteristics than typical W&R Nb3Sn CICCs for some parameters that are known to influence CICC performance. Where the R&W CICCs extend the range of those parameters, they also continue trends formed by the W&R CICCs with the parameters. The main observation, however, is that although the current sharing temperature performances of the R&W samples are above the average of the W&R samples they were compared to, they are not the highest. A similar observation applies to a cost comparison of the superconducting material where the R&W CICCs are found to be relatively cheap but not the cheapest. Given these results, clear practical advantages to the R&W CICC design is not evident.