• Title/Summary/Keyword: the influence of wind

Search Result 887, Processing Time 0.029 seconds

Limitations for the control of wind-loaded slender bridges with movable flaps

  • Kirch, Arno;Peil, Udo
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.441-462
    • /
    • 2012
  • This article presents theoretical investigations on techniques for the improvement of the dynamic characteristics of slender bridges under wind action. Aerodynamically effective control shields are applied as controlled actuators. The first part of the article describes the modelling of the uncontrolled aeroelastic system. Acting aerodynamic forces are consistently characterised using linear time-invariant transfer elements in terms of rational functions. On this basis, two configuration levels of the uncontrolled system are represented with linear time-invariant state-space models and investigated. The second part of the article addresses controller design and the behaviour of the controlled aeroelastic system. Both fundamental limits for stabilisation and the efficiency for attenuating the influence of gusts are described for different actuator mechanisms. The results are derived and discussed with methods of control theory.

Optimum Design of the Heating Equipment by Influence of Wind Speed at Cryogenic Temperature (극저온에서 풍속의 영향에 따른 발열기자재의 최적설계)

  • Cho, Hyun Jun;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.463-479
    • /
    • 2020
  • Purpose: The purpose of this study is to evaluate the performance of heating equipments by implementing the extreme environment in which ships navigating the ice zone are exposed and to study and apply the experimental method to infer the optimized design for each factors. Methods: It is required to verify by analysis and experiment how the environment with low temperature and wind speed implemented through the test facility affects the heating walk-way and The optimum design of the heating walk-way in that extreme environment is derived using the Taguchi technique. Results: The results of this study are as follows; It was found the effect on the condition of each factor and derive optimized conditions that satisfy the performance condition of the heating walk-way in extreme use environment. Conclusion: Ships operating in Polar waters require reliable and durable facilities for all environments during sailing.

The Meteorological Factors Governing $SO_2$ Concentrations During the Wintertime in Seoul Area (서울 지역 겨울철 $SO_2$ 농도를 지배하는 기상 인자)

  • 박일수;이덕길;강인구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.96-104
    • /
    • 1991
  • An investigation is carried out for the roles of the synoptic meteorology in governing $SO_2$ concentrations in Seoul during the wintertime. This study has used the daily records of wind and temperature measured at the Korea Meteorological Administration in Seoul. A one-dimensional diffusion model has been used for investigating the influence of the mixing height on the diurnal variation of concentration. The day to day variations of the concentration are well correlated with those of wind and temperature. The diurnal variation of the concentration is dictated by the variation of mixing height. It is also found that mesoscale wind field is required to explain the mesoscale distribution of the concentration.

  • PDF

An Experimental Study on the Pressure Distribution for the Surface of a Road Vehicle Model Subjected to Various Wind Direction (풍향의 변화에 따른 자동차 모형 표면의 압력분포에 대한 실험적 연구)

  • 지호성;김경천;박원규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.84-91
    • /
    • 2001
  • To investigate the aerodynamic characteristics of the on a road vehicle, experimenrs were performed at an Atmospheric Boundary Layer Wind Tunnel. The scaled model of an automobile with 1 : 3 scaling ratio was used. The Reynolds number based on the free stream velocity and model length was $7.93{\times}10^5$. The influence of crosswind to the stability of automobile was investigated by the pressure distribution measurements and flow visualization studies. with the variation of the angle of attack, the change in pressure coefficient depends highly on the flow separation regimes. The experimental and numerical results are compared and found to be in good agreements.

  • PDF

A Study on the Development of the Web-based Monitoring System for the Wind Turbine Powers (웹 기반 풍력발전 모니터링 시스템 개발에 관한 연구)

  • Kim, In-Su;Kim, Sung-Sik;Choi, Young-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1147-1148
    • /
    • 2006
  • The increase of exhaust gas which is caused by with the industry activity which follows in the Industrial Revolution of the human being has had an influence on the globe climate system so that causes the problem of the greenhouse effect. As a comprehensive countermeasures, it has been prompted to save energy, build a structure environmentally friendly and use renewable energy sources that are continually replenished by nature-the sun, the wind, the Earth's heat, and plants. In addition, new technologies that turn these fuels into usable forms of energy-most often electricity, but also heat, chemicals or mechanical power have been applied actively to the social infrastructure. Therefore, there should be methods to manage forms of renewable energy effectively and securely. This paper proposes the web-based monitoring system for the wind power system of these methods and introduces the real web-based monitoring system installed in Daegwallyeong.

  • PDF

A study on the reduction in angle of attack by the constructions in the vicinity of airport runway with crosswind (활주로 주변 건물을 지나는 측풍에 의한 이.착륙 항공기의 받음각 감소에 관한 연구)

  • Hong, Gyo-Young;Sheen, Dong-Jin;Park, Soo-Bok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper illustrates how simulation modeling can be of substantial help in designing constructions in the vicinity of airport runway and presents results about the influence of aircraft wake vortices through computer simulation. The cross-wind energy dissipation rate is estimated from the Y-directional velocity spectrum for a sample in a real meteorological observation data. The eddy region about cross wind in the vicinity of airport runway is highly dependent on the height and shape of the buildings and the AOA of aircraft is greatly influenced by Y-directional velocity occurred by dint of separation region in runway.

  • PDF

Numerical characterization of real railway overhead cables

  • Sanchez-Rebollo, Cristina;Velez, Enrique;Jimenez-Octavio, Jesus R.
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2015
  • This paper presents a numerical characterization of real railway overhead cables based on computational fluid dynamics (CFD). Complete analysis of the aerodynamic coefficients of this type of cross section yields a more accurate modelling of pressure loads acting on moving cables than provided by current approaches used in design. Thus, the characterization of certain selected commercial cables is carried out in this work for different wind speeds and angles of attack. The aerodynamic lift and drag coefficients are herein determined for two different types of grooved cables, which establish a relevant data set for the railway industry. Finally, the influence of this characterization on the fluid-structure interaction (FSI) is proved, the static behavior of a catenary system is studied by means of the finite element method (FEM) in order to analyze the effect of different wind angles of attack on the stiffness distribution.

Study of design parameters on flutter stability of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.331-344
    • /
    • 2006
  • The cable-stayed-suspension hybrid bridge is a cooperative system developed from the traditional cable-stayed and suspension bridges, and takes some advantages of the two bridge systems. It is also becoming a competitive design alternative for some long and super long-span bridges. But due to its great flexibility, the flutter stability plays an important role in the design and construction of this bridge system. Considering the geometric nonlinearity of bridge structures and the effects of nonlinear wind-structure interaction, method and its solution procedure of three-dimensional nonlinear flutter stability analysis are firstly presented. Parametric analyses on the flutter stability of a cable-stayed-suspension hybrid bridge with main span of 1400 meters are then conducted by nonlinear flutter stability analysis, some design parameters that significantly influence the flutter stability are pointed out, and the favorable structural system of the bridge is also discussed based on the wind stability.

Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry (풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part I : One-shell 기하형상)

  • Lee, Sang-Yun;Noh, Sam-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.

Study on the Coefficient of Air Convection for Concrete Mix of Nuclear Power Plant (원전 배합 콘크리트의 외기대류계수에 관한 연구)

  • Lee, Yun;Kim, Jin-Keun;Choi, Myoung-Sung;Song, Young-Chul;Woo, Sang-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.148-151
    • /
    • 2004
  • The hardening of concrete after setting is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the tensile cracking. As a result, in order to predict the exact temperature distribution in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection for concrete mix of nuclear power plant, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. The coefficient of air convection obtained from experiment increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. The coefficient of air convection for concrete mix of nuclear power plant obtained from this study was well agreed with the existing models.

  • PDF