• Title/Summary/Keyword: the influence of wind

Search Result 887, Processing Time 0.033 seconds

Influence of Sea Condition on Catch Fluctuation of Long Line for Common Octopus, Octopus Variddilis, in the Coastal Waters of Yosu (2) (여수연안 낙지주낙 어장의 해황과 어획 변동에 관한 연구(2))

  • 정정민;김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.326-330
    • /
    • 2001
  • In order to investigate the influence of sea condition on the catch fluctuation of long line for common octopus, octopus variabilis, the oceanographic factors, i. e., the wind direction, the wind speed, the age of moon and ebb tide and flood tide in the coastal waters of Yosu from Jan. 11 to Jul. 25 in 1997, and compared with the catches of common octopus, octopus variabilis, by long line. The results obtained summerized as follows; 1) The catch of common octopus was highest in wind direction from SE and lowest in that from NW. The catch was highest at the wind speed of 2m/sec and decreased with increasing speed, over 2m/sec. 2) The catch of common octopus was highest at the day of neap tide and lowest at the mid day, from neap tide to spring tide. More strictly the catch was higher during days at which the current became rapid than during days at which the current became slow. The catch was higher always at flood tide than at ebb tide in all the days investigated and highest with in one hour from ebb tide.

  • PDF

Evaluation of Climatological Mean Surface Winds over Korean Waters Simulated by CORDEX-EA Regional Climate Models (CORDEX-EA 지역기후모형이 모사한 한반도 주변해 기후평균 표층 바람 평가)

  • Choi, Wonkeun;Shin, Ho-Jeong;Jang, Chan Joo
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.115-129
    • /
    • 2019
  • Surface winds over the ocean influence not only the climate change through air-sea interactions but the coastal erosion through the changes in wave height and direction. Thus, demands on a reliable projection of future changes in surface winds have been increasing in various fields. For the future projections, climate models have been widely used and, as a priori, their simulations of surface wind are required to be evaluated. In this study, we evaluate the climatological mean surface winds over the Korean Waters simulated by five regional climate models participating in Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia (EA), an international regional climate model inter-comparison project. Compared with the ERA-interim reanalysis data, the CORDEX-EA models, except for HadGEM3-RA, produce stronger wind both in summer and winter. The HadGEM3-RA underestimates the wind speed and inadequately simulate the spatial distribution especially in summer. This summer wind error appears to be coincident with mean sea-level pressure in the North Pacific. For wind direction, all of the CORDEX-EA models simulate the well-known seasonal reversal of surface wind similar to the ERA-interim. Our results suggest that especially in summer, large-scale atmospheric circulation, downscaled by regional models with spectral nudging, significantly affect the regional surface wind on its pattern and strength.

Mathematical explanation on the POD applications for wind pressure fields with or without mean value components

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin;Chen, Huai
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.367-383
    • /
    • 2016
  • The influence mechanism of mean value components, noted as $P_0$, on POD applications for complete random fields $P_C(t)$ and fluctuating random fields $P_F(t)$ are illustrated mathematically. The critical philosophy of the illustration is introduction of a new matrix, defined as the correlation function matrix of $P_0$, which connect the correlation function matrix of $P_C(t)$ and $P_F(t)$, and their POD results. Then, POD analyses for several different wind pressure fields were presented comparatively as validation. It's inevitable mathematically that the first eigenmode of $P_C(t)$ resembles the distribution of $P_0$ and the first eigenvalue of $P_C(t)$ is close to the energy of $P_0$, due to similarity of the correlation function matrixs of $P_C(t)$ and $P_0$. However, the viewpoint is not rigorous mathematically that the first mode represents the mean pressure and the following modes represent the fluctuating pressure when $P_C(t)$ are employed in POD application. When $P_C(t)$ are employed, POD results of all modes would be distorted by the mean value components, and it's impossible to identify $P_0$ and $P_F(t)$ separately. Consequently, characteristics of the fluctuating component, which is always the primary concern in wind pressure field analysis, can only be precisely identified with $P_0$ excluded in POD.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

Robust optimization of a hybrid control system for wind-exposed tall buildings with uncertain mass distribution

  • Venanzi, Ilaria;Materazzi, Annibale Luigi
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.641-659
    • /
    • 2013
  • In this paper is studied the influence of the uncertain mass distribution over the floors on the choice of the optimal parameters of a hybrid control system for tall buildings subjected to wind load. In particular, an optimization procedure is developed for the robust design of a hybrid control system that is based on an enhanced Monte Carlo simulation technique and the genetic algorithm. The large computational effort inherent in the use of a MC-based procedure is reduced by the employment of the Latin Hypercube Sampling. With reference to a tall building modeled as a multi degrees of freedom system, several numerical analyses are carried out varying the parameters influencing the floors' masses, like the coefficient of variation of the distribution and the correlation between the floors' masses. The procedure allows to obtain optimal designs of the control system that are robust with respect to the uncertainties on the distribution of the dead and live loads.

Influence of the non-linearity of the aerodynamic coefficients on the skewness of the buffeting drag force

  • Denoel, Vincent;Degee, Herve
    • Wind and Structures
    • /
    • v.9 no.6
    • /
    • pp.457-471
    • /
    • 2006
  • This paper is devoted to the non linear quasi-steady aerodynamic loading. A linear approximation is often used to compute the response of structures to buffeting forces. Some researchers have however shown that it is possible to account for the non linearity of this loading. This non linearity can come (i) from the squared velocity or (ii) from the shape of the aerodynamic coefficients (as functions of the wind angle of attack). In this paper, it is shown that this second origin can have significant implications on the design of the structure, particularly when the non linearity of the aerodynamic coefficient is important or when the transverse turbulence is important.

Automated identification of the modal parameters of a cable-stayed bridge: Influence of the wind conditions

  • Magalhaes, Filipe;Cunha, Alvaro
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.431-444
    • /
    • 2016
  • This paper was written in the context of a benchmark study promoted by The Hong Kong Polytechnic University using data samples collected in an instrumented cable-stayed bridge. The main goal of the benchmark test was to study the identification of the bridge modes of vibration under different wind conditions. In this contribution, the tools developed at ViBest/FEUP for automated data processing of setups collected by dynamic monitoring systems are presented and applied to the data made available in the context of the benchmark study. The applied tools are based on parametric output only modal identification methods combined with clustering algorithms. The obtained results demonstrate that the proposed algorithms succeeded to automatically identify the modes with relevant contribution for the bridge response under different wind conditions.

Effect of Tension and Wind Velocity on Temperature of ACSR Overhead Conductor (장력과 풍속이 ACSR 가공송전선의 온도에 미치는 영향)

  • Kim Shang-Shu;Kim Byung-Geol;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.480-485
    • /
    • 2006
  • A research was undertaken on the thermal properties and behavior of the conductors in a controlled chamber, which was designed to implement the outdoor air temperature, heat and wind conditions With ACSR $410mm^2$ overhead conductors, we measured the maximum temperature of the conductors and the temperature gradient from the core to the surface regions as a function of current, tension, wind velocity and outdoor air temperature. This test also provided a comparative analysis between the measured temperature values of conductors in the controlled chamber and the theoretical calculations of ANSI/IEEE at normal condition. There was not much influence of tension on the conductor temperature. However, the compactness of conductor wires increased with an increase in tension, which eventually increased the coefficient of effective thermal conductivity and, accordingly the conductor temperature was reduced more or less.

Influence of soil-structure interaction on seismic responses of offshore wind turbine considering earthquake incident angle

  • Sharmin, Faria;Hussan, Mosaruf;Kim, Dookie;Cho, Sung Gook
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • Displacement response and corresponding maximum response energy of structures are key parameters to assess the dynamic effect or even more destructive structural damage of the structures. By employing them, this research has compared the structural responses of jacket supported offshore wind turbine (OWT) subjected to seismic excitations apprehending earthquake incidence, when (a) soil-structure interaction (SSI) has been ignored and (b) SSI has been considered. The effect of earthquakes under arbitrary angle of excitation on the OWT has been investigated by means of the energy based wavelet transformation method. Displacement based fragility analysis is then utilized to convey the probability of exceedance of the OWT at different soil site conditions. The results show that the uncertainty arises due to multi-component seismic excitations along with the diminution trend of shear wave velocity of soil and it tends to reduce the efficiency of the OWT to stand against the ground motions.

Analysis of Salt Contamination in the domestic coast area (국내 해안지역의 오손특성 분석)

  • Kim, Dong-Myung;Kim, Byung-Sook;Lee, Nam-Woo;Choi, Sun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.504-505
    • /
    • 2006
  • We installed the measurement equipment which measure the equivalent Salt Deposit Density(ESDD) of the domestic coast area in the selected 112 place and investigated the influence of the wind which blow at the point of 500m from coast installing a wind vane, wind gauge for realtime measurement. During september${\sim}$december, 2005, ESDD which passively measured at the point of 50m from coast is maximum C grade in the Homigot of Pohang, B grade in the Gochang and A grade in the remaining point. Also ESDD which is measured in the east coast, west coast respectively is the more the distance being far from the coast to inland, the more ESDD rapidly decreasing but each area of the south coast is difficult to identify the decreased tendency because of very low measurements.

  • PDF