• Title/Summary/Keyword: the influence of wind

Search Result 887, Processing Time 0.027 seconds

Measurement of aerodynamic coefficients of tower components of Tsing Ma Bridge under yaw winds

  • Zhu, L.D.;Xu, Y.L.;Zhang, F.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.53-70
    • /
    • 2003
  • Tsing Ma Bridge in Hong Kong is the longest suspension bridge in the world carrying both highway and railway. It has two H-shape concrete towers, each of which is composed of two reinforced concrete legs and four deep transverse prestressed concrete beams. A series of wind tunnel tests have been performed to measure the aerodynamic coefficients of the tower legs and transverse beams in various arrangements. A 1:100 scaled 3D rigid model of the full bridge tower assembled from various tower components has been constructed for different test cases. The aerodynamic coefficients of the lower and upper segments of the windward and leeward tower legs and those of the transverse beams at different levels, with and without the dummy bridge deck model, were measured as a function of yaw wind angle. The effects of wind interference among the tower components and the influence of the bridge deck on the tower aerodynamic coefficients were also investigated. The results achieved can be used as the pertinent data for the comparison of the computed and field-measured fully coupled buffeting responses of the entire bridge under yaw winds.

The Influence on the Stack Effect with the Opening of Smoke Ventilators in High-rise Buildings (초고층 건축물에서 배연창 개방이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyue;Yeo, Yong-Ju;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.209-213
    • /
    • 2008
  • The effects on the performance of natural smoke exhaust ventilators installed in high-rise buildings were analyzed depending on the wind velocities and smoke temperatures using CONTAMW tool. The results showed that the smoke exhaust ventilators can maintain given performances in such conditions as low smoke temperatures and low wind velocities. However, high smoke temperatures and high wind velocities can prevent the smoke ventilators to exhaust smokes from the fire room. Significant changes in stack effects in high-rise buildings can also occur with the opening of smoke ventilators in the fire floor.

  • PDF

A study of wind effect on damping and frequency of a long span cable-stayed bridge from rational function approximation of self-excited forces

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.215-232
    • /
    • 2007
  • This paper presents an aeroelastic analysis procedure to highlight the influence of wind velocity on the structural damping and frequency of a long span cable-stayed bridge. Frequency dependent self-excited forces in terms of flutter derivatives are expressed as continuous functions using rational function approximation technique. The aeroelastically modified structural equation of motion is expressed in terms of frequency independent modal state-space parameters. The modal logarithmic dampings and frequencies corresponding to a particular wind speed are then determined from the eigen solution of the state matrix.

A parametric study of indicial function models in bridge deck aeroelasticity

  • Borri, C.;Costa, C.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.405-420
    • /
    • 2004
  • In common approaches, bridge dynamics under wind action is analyzed by modeling the interaction between fluid and structure by means of transient wind loads acting over the structure itself. Amid various possible manners to describe such types of loads, a representation based on families of 'indicial functions' is adopted here. The aim is to investigate its flexibility to capture the main features of wind-bridge interaction. A set of coefficients is involved in indicial functions. The values that one may attribute to them suffer uncertainties coming from experimental errors affecting data. Here, the sensitivity of a 2-DOF schematic model to the variations of these coefficients is investigated at fixed values of dynamic derivatives and for various types of indicial functions. It is shown how parameter variations influence phase portraits.

Study on Stability Analysis for Systematic Impact Assessment at the Cooperation of Land in Offshore Wind Power Generation Demonstration Complex (해상풍력 실증 단지 육지 연계시 계통 영향 평가를 위한 안정도 해석에 관한 연구)

  • Park, Sang-ho;Kim, Kern-Joong;Han, Sangwook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.151-157
    • /
    • 2017
  • In this paper, it is the result of analysis of the stability by power system analysis about the influence on the power system when the southwest - offshore wind power demonstration complex is constructed to 60MW and it is linked with the onshore power system. Considering the position of the wind turbine actually installed and the length of the cooperating line, we modeled the wind generators, offshore substation and the turbine step-up transformer. Changes of voltage when internal and external faults occurred is analyzed and the reactive power demand according to the amount of electricity generation is derived. And also phase angle stability and frequency is observed through a transient analysis. This paper clarify that there is no problem in the system when only offshore wind power is linked with the grid and try to present the reactive power amount necessary for maintaining the voltage of the point of cooperation appropriately.

A NUMERICAL ANALYSIS OF THE TRAIN WIND IN THE SUBWAY TUNNEL (지하철 터널 내 열차풍의 수치해석적 연구)

  • Lee, J.H.;Juraeva, M.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.496-500
    • /
    • 2010
  • Understanding train-wind is the best method to know how to optimize subway ventilation system. The capacity and efficiency of the subway ventilation system are known by pressure and velocity while train runs. Analysis of the internal flow in subway tunnel and around subway station are studied using numerical methods. Characteristics of internal flow and influence of subway ventilation system for the subway station with platform screen door and tunnel are analyzed by unsteady state analysis. Velocity and pressure of train wind transformation are compared at around subway ventilation system and the internal flow is investigated at the subway tunnel.

  • PDF

Rain-wind induced vibration of inclined stay cables -Part II: Mechanical modeling and parameter characterisation

  • Cosentino, Nicola;Flamand, Olivier;Ceccoli, Claudio
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.485-498
    • /
    • 2003
  • This paper presents a mechanical model of Rain-Wind Induced Vibration (RWIV) of stay cables. It is based on the physical interpretation of the phenomenon as given in Cosentino, et al. (2003, referred as Part I). The model takes into account all the main forces acting on cable, on the upper water rivulet (responsible of the excitation) and the cable-rivulet interaction. It is a simplified (cable cross-sectional and deterministic) representation of the actual (stochastic and three-dimensional) phenomenon. The cable is represented by its cross section and it is subjected to mechanical and aerodynamic (considering the rivulet influence) forces. The rivulet is supposed to oscillate along the cable circumference and it is subjected to inertial and gravity forces, pressure gradients and air-water-cable frictions. The model parameters are calibrated by fitting with experimental results. In order to validate the proposed model and its physical basis, different conditions (wind speed and direction, cable frequency, etc.) have been numerically investigated. The results, which are in very good agreement with the RWIV field observations, confirm the validity of the method and its engineering applicability (to evaluate the RWIV sensitivity of new stays or to retrofit the existing ones). Nevertheless, the practical use of the model probably requires a more accurate calibration of some parameters through new and specifically oriented wind tunnel tests.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.

Influence of Atmospheric Stability and Topography on the Wind Direction Fluctuations (대기안정도(大氣安定度)와 지형조건(地形條件)에 따른 풍향변동폭(風向變動幅)의 특성(特性))

  • Kim, Yong Goog;Lee, Chong Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.138-145
    • /
    • 1992
  • Dependence of the standard deviation of wind direction fluctuations, ${\sigma}_{\theta}$, on atmospheric stability, averaging time and topography were analysed with the data measured at three sites, Youngjongdo beach of the Yellow Sea, Chuncheon basin and Doam-Dam valley. The results show that the mean value of ${\sigma}_{\theta}$ is large in complex terrain, the Doam-Dam site. It is notable that the large value of ${\sigma}_{\theta}$ at night is associated with the low wind speed and the strong stable condition. In order to study the long-period fluctuations of the wind direction, ${\sigma}_{\theta}$ for longer than 10 minutes averaging time was further analysed using the data obtained at the Chuncheon basin. At the averaging time shorter than 60 minutes, larger ${\sigma}_{\theta}$ is associated with longer averaging time in the strong stable condition. However, ${\sigma}_{\theta}$ was not affected significantly by wind speed and averaging time in neutral conditions. The results of the spectrum analysis for the time series data of wind direction showed that low-frequency fluctuations ranging from 10 to 60 minutes were dominated at the Chuncheon basin in strong stable condition.

  • PDF

Correction of Overcurrent Protective Relay on Distribution Feeders Considering the Power Output of Wind Farm Interconnected with Utility Networks (계통 연계 풍력발전단지의 출력 조건을 고려한 배전선 과전류 계전기 정정)

  • Kim, J.W.;Jang, S.I.;Kim, K.H.;Yoo, N.S.;Park, H.J.;Song, D.S.;Lee, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.342-344
    • /
    • 2003
  • This paper describes the correction of overcurrent protective relaying set value in distribution networks interconnected with wind farm by dedicated line. The wind farm composed of wind turbine generators is one of the great energy sources; however, it would be also highly possible that the current in the point of common coupling is influenced by the output power of wind farm. So, the overcurrent relay applied in distribution feeders might generate trip signal for normal operation. In order to prevent the mal-operation of overcurrent relay, it is necessary to correct the relay's setting value according to the output power of end farm. This paper presents the influence of wind farm on the overcurrent relaying set value in distribution feeders for cases of fault as well as normal operation and proposes the basic strategy for correction of overcurrent relaying set value.

  • PDF