• Title/Summary/Keyword: the influence of wind

Search Result 887, Processing Time 0.027 seconds

Wind Tunnel Test for the Propeller Performance of the High Altitude UAV (고고도 무인기용 프로펠러 성능특성 풍동시험)

  • Cho, Teahwan;Kim, Yangwon;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.189-196
    • /
    • 2018
  • Propeller performance measurement system for high altitude UAV was designed and applied to the wind tunnel test for 2 propeller models with a diameter around 1 m. Mechanical power of the propeller was directly measured by using the torque sensor installed on the rotating axis. The thrust of whole operation body including the propeller was measured by thrust road cell. The guide rail system was suggested to reduce the weight influence of operation body on the thrust road cell. The influence of each measured variables on the aerodynamic coefficients was studied with the repeatability and uncertainty analysis. This analysis result shows that the accuracies of the road cell and the wind velocity were major factors for the thrust coefficient. Propeller performance with typical RPM was measured with various wind speeds and the test results was summarized by performance coefficients for 5 different RPM.

Imperfection sensitivity to elastic buckling of wind loaded open cylindrical tanks

  • Godoy, Luis A.;Flores, Fernando G.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.533-542
    • /
    • 2002
  • This paper considers the buckling and post-buckling behavior of empty metal storage tanks under wind load. The structures of such tanks may be idealized as cantilever cylindrical shells, and the structural response is investigated using a computational model. The modeling employs a doubly curved finite element based on a theory by Simo and coworkers, which is capable of handling large displacements and plasticity. Buckling results for tanks with four different geometric relations are presented to consider the influence of the ratios between the radius and the height of the shell (R/L), and between the radius and the thickness (R/t). The studies aim to clarify the differences in the shells regarding their imperfection-sensitivity. The results show that thin-walled short tanks, with R/L = 3, display high imperfection sensitivity, while tanks with R/L = 0.5 are almost insensitive to imperfections. Changes in the total potential energy of tanks that would buckle under the same high wind pressures are also considered.

Full-scale investigation of wind-induced vibrations of a mast-arm traffic signal structure

  • Riedman, Michelle;Sinh, Hung Nguyen;Letchford, Christopher;O'Rourke, Michael
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.405-422
    • /
    • 2015
  • In previous model- and full-scale studies, high-amplitude vertical vibrations of mast-arm traffic signal structures have been shown to be due to vortex shedding, a phenomenon in which alternatingly shed, low-pressure vortices induce oscillating forces onto the mast-arm causing a cross-wind response. When the frequency of vortices being shed from the mast-arm corresponds to the natural frequency of the structure, a resonant condition is created causing long-lasting, high-amplitude vibrations which may lead to the fatigue failure of these structures. Turbulence in the approach flow is known to affect the cohesiveness of vortex shedding. Results from this full-scale investigation indicate that the surrounding terrain conditions, which affect the turbulence intensity of the wind, greatly influence the likelihood of occurrence of long-lasting, high-amplitude vibrations and also impact whether reduced service life due to fatigue is likely to be of concern.

The Influence of Meteorological Factors on PM10 Concentration in Incheon (기상인자가 미세먼지 농도에 미치는 영향)

  • Shin, Moon-Khee;Lee, Choong-Dae;Ha, Hyun-Sup;Choe, Choon-Suck;Kim, Yong-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.322-331
    • /
    • 2007
  • In this study, we have analyzed $PM_{10}$ concentration measured at Incheon Regional Air Monitoring Network (10 stations) and meteorological data at Incheon Weather Station to investigate factors (i.e. wind direction, wind speed, relative humidity, major meteorological phenomenon, and sea-land breezes existence) influencing $PM_{10}$ concentration in Incheon during 2005. Statistical differences among meteorological factors were assessed by Kruskal-Wallis test or Mann-Whitney U test. The main conditions causing high $PM_{10}$ concentration are summarized below; 1. When westerly wind prevailed (however, $PM_{10}$ decreased when winds were blowing from the east or north). 2. When the winds were calm, owing to accumulation of nearby emissions under stagnant conditions, or when the wind speed is in excess of 6 m/s, which shows the effect of fugitive dust produced by wind erosion. 3. Under the condition of high relative humidity and poor diffusion based on meteorological phenomenon such as fog, mist, and haze. 4. When the Sea-Land breezes existed, which occurred 70 days in Incheon during 2005 and contributed significantly to high $PM_{10}$ concentration in the coastal urban area. In conclusion, we have found that the meteorological factors have influence on $PM_{10}$ concentration in Incheon.

Aerodynamic force characteristics and galloping analysis of iced bundled conductors

  • Lou, Wenjuan;Lv, Jiang;Huang, M.F.;Yang, Lun;Yan, Dong
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.135-154
    • /
    • 2014
  • Aerodynamic characteristics of crescent and D-shape bundled conductors were measured by high frequency force balance technique in the wind tunnel. The drag and lift coefficients of each sub-conductor and the whole bundled conductors were presented under various attack angles of wind. The galloping possibility of bundled conductors is discussed based on the Den Hartog criterion. The influence of icing thickness, initial ice accretion angle and sub-conductor on the aerodynamic properties were investigated. Based on the measured aerodynamic force coefficients, a computationally efficient finite element method is also implemented to analyze galloping of iced bundled conductors. The analysis results show that each sub-conductor of the bundled conductor has its own galloping feature due to the use of aerodynamic forces measured separately for every single sub-conductors.

Pressure distribution and aerodynamic forces on stationary box bridge sections

  • Ricciardelli, Francesco;Hangan, Horia
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.399-412
    • /
    • 2001
  • Simultaneous pressure and force measurements have been conducted on a stationary box deck section model for two configurations (namely without and with New Jersey traffic barriers) at various angles of incidence. The mean and fluctuating aerodynamic coefficients and pressure coefficients were derived, together with their spectra and with the coherence functions between the pressures and the total aerodynamic forces. The mean aerodynamic coefficients derived from force measurements are first compared with those derived from the integration of the pressures on the deck surface. Correlation between forces and local pressures are determined in order to gain insight on the wind excitation mechanism. The influence of the angle of incidence on the pressure distribution and on the fluctuating forces is also analysed. It is evidenced how particular deck section areas are more responsible for the aerodynamic excitation of the deck.

A Study on the Estimation of Wind Forces Influence upon the Turning Ability of a Car Carrier Ship (자동차운반선의 선회성능에 미치는 풍하중의 영향에 관한 연구)

  • 최명식;이경우;오양국
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.5
    • /
    • pp.397-403
    • /
    • 2000
  • Since very large and high-speed ships have been appeared in marine transportation from 1970s, these ships with poor maneuverability have made large-scale accidents frequently all over the world. The IMO(International Maritime Organization) recommended that ship designers should evaluate various maneuvering performance at initial stage and serve them to ship operators when they deliver a new ship. Meantime, it is expected that ships with large and wide superstructure would have poor maneuverability when they are affected by strong wind. Therefore, car carrier ship with large superstructure was selected to confirm how the ship responds to the external wind forces in this paper. The lateral and transverse projected areas above the water level were considered and ship behaviors were checked by change of rudder angles under severe wind conditions of different directions. In addition, hydrodynamic derivatives and coefficients were predicted from ship particulars and numerical calculations were carried out with the mathematical model of low speed maneuvering motions.

  • PDF

EFFECTS OF DAMPING LENGTHS ON THE WIND VELOCITY FOR 32 CYG (감쇄길이 변화에 따른 32 Cyg의 항성풍 속도분포)

  • 김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.14-20
    • /
    • 1995
  • We calculated the wind velocities for 32 Cyg in order to understand how influence a damping length on the wind of supergiant driven by Alfven waves. Four cases, $\lambda$=0.9, 1.0, 5.0, the ratio of the damping length to the supergiant's radius, and the damping length increasing linearly with the distance from the star, were compared. The results showed the forces by Alfven waves gave the major contribution to the wind velocity but the forces by the pressure and gravitation did little. The model for the damping length with the linear relation showed the rapid increased due to short damping length near the surface of the star.

  • PDF

Analysis of Typhoon for Design of Sea-Dike (방조제의 설계를 위한 태풍의 분석)

  • 한상욱;이중기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4089-4095
    • /
    • 1976
  • The safety of shore structure including the sea dipe is largely affected by typhoon. Accordingly it is desirable to analize the typhoon and determine the wind direction and velocity for use in planning and design of the structure. This method was adopted for the design of the Yong San Gang Estuary Dam. A comparative study of the results of typhoon analysis with the meteorological data obtained through actual observation is summarized as follows; (1) 62% of the typhoons occur during May to June in a year, and 62% of the typhoons which have an influence on the Korean peninsula, especially the proposed estuary dam fsite, proceed eastward through the zone in lat. 36$^{\circ}$-37$^{\circ}$N. Such typhoons occur two to three times a year on the average. (2) Data on typhoon "SARL" were used as a model case in designing the estuary dam, where it was proved that a southwesterly wind had a maximum velocity of 30m/sec in case r=150km, ${\alpha}$=120$^{\circ}$. Within the range of 22$^{\circ}$30'on the right and left side of the fetch line of the estuary dam, the wind direction varied SSW\longrightarrowSW\longrightarrowWSW, and the wind velocity varied 29m/sec\longrightarrow30m/sec\longrightarrow125m/sec. Such phenomemum lasted for five hours. (3) An analysis of data obtained during 44 years at Mok Po Meteorological Station shows that a wind with a velocity of some 25m/sec occurred twelve times in the S-direction and two times in the SW-direction, while that with a velocity of 30m/sec occurred three times in the S-direction, three times in the SSW-direction and one time in the SW-direction. The wind which had an influence on the estuary dam had a direction of SSW\longrightarrowSW\longrightarrowWSW and a velocity of min. 30m/sec. Actually, a wind with a max. velocity of 31.3m/sec occurred in the SSW-direction on March 15 and 16, 1956 where the mean velocity during two hours was 28m/sec and that during four hours was 24.6m/sec. (4) The data obtained through actual observation show that when the velocity is low, the wind with a fixed direction lasts long, and when the velocity is high, it is short-lived. It is difficult to determine the velocity of a wind which blows in a fixed direction for consecutive two or four hours. Therefore, the values obtained through typhoon analysis are larger that those obtained through actual observation, and hence, it is resonable to use the analyzed valuse for design of the estuary dam and shore structures. (5) The greatest effect was had on the estuary dam when typhoon was proceeding at a velocity of 29.71m/sec in the direction of ${\alpha}$=120$^{\circ}$(SW) at a point of R=150km from the center of the typhoon.

  • PDF

THERMOSPHERIC NEUTRAL WINDS WITHIN THE POLAR CAP IN RELATION TO SOLAR ACTIVITY

  • Won, Young-In;Killeen, T.L.;Niciejewski, R.J.
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • Thermospheric neutral winds and temperatures have been collected from the ground-based Fabry-Perot interferometer (FPI) at Thule Air Base ($76.5^{\circ}N{\;}69.0^{\circ}W$), Greenland since 1985. The thermospheric observations are obtained by determining the Doppler characteristics f the [OI] 6300 ${\AA}$ emissions of atomic oxygen. The FPI operates routinely during the winter season, with a limitation in the observation by the existence of clouds. For this study, data acquired from 1985 to 1991 were analyzed. The neutral wind measurements from these long-term measurements are used to investigate the influence of solar cycle variation on the high-latitude thermospheric dynamics. These data provide experimental results of the geomagnetic polar cap are also compared with the predictions of two semiempirical models : the vector spherical harmonics (VSH) model of Killeen et al. (1987) and the horizontal wind model (HWM) of Hedin et al. (1991). The experimental results show a good positive correlation between solar activity and thermospheric wind speed over the geomagnetic polar cap. The calculated correlation coefficient indicates that an increase of 100 in F10.7 index corresponds to an increase in wind speed of about 100 m/s. The model predictions reveal similar trends of wind speed variation as a function of solar activity, with the VSH and HWM models tending to overestimate and underestimate the wind speed, respectively.

  • PDF