• Title/Summary/Keyword: the influence of wind

Search Result 887, Processing Time 0.034 seconds

Economic and Social Impact Analysis of Jeju International Wind Ensemble Festival (제주국제관악제가 제주에 미치는 경제.사회적 영향 분석)

  • Lee, Eun-Jeong;Hwang, Kyung-Soo;Ko, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3506-3513
    • /
    • 2009
  • This study is to analyze the ripple effects of Jeju International Wind Ensemble Festival on Jeju regional economy and to explain the influence of the festival on Jeju regional society and culture. This study analyzed the economic ripple effects of the tourism industry with the Jeju inter-industry relation table. To explain the influence on Jeju regional society and culture, this study examined society-integrating part, policy-advertising part, culture-developing part, and industry-developing part.

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

Three-Dimensional Trajectory of a Fluid Particle in Air with Wind Effects and Air Resistance (공기 저항과 바람의 영향을 고려한 대기에서의 유체입자의 3차원 궤적)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.797-808
    • /
    • 2001
  • Three-dimensional trajectory of fluid particle is simulated by a particle motion, which is able to examine the influences of changes in the several parameters. To calculate the trajectory of a particle, the Runge-Kutta method was utilized. The use of a projectile of particles for the trajectory of liquid jet has been shown to be useful to estimate the influence of different operating parameters such as best particle diameter, density of liquid body, initial take-off velocity, wind velocity, cross wind velocity, take-off angle, and base angle for a released flow from the nozzle. The results give the trajectories of various types of particle of body and at different elevations, base angles, wind velocities and densities of liquid body. The trajectories in a vacuum show that air resistances decreases both the distance and the maximum height of a projectile, and also explain that the termination time is also reduced in air. In addition, the maximum distance in the x direction was obtained with take-off angles from 30 degrees to 45 degrees in still air and the projectile of particles was highly effected by wind and cross wind. Clearly, a particle has to be so positioned as to take the optimum possible advantage of the wind if the maximum distances is requested. The wind astern increased the maximum distances of x direction compared with the wind ahead. Finally, it is possible to optimize the design of pump by using these results.

  • PDF

Train Wind Analysis of Subway Platforms (지하철 승강장 열차풍 특성 분석)

  • Bae, Sung-Joon;Hwang, Sun-Ho;Shin, Chang-Hun;Kim, Shin-Do;Lee, Kyoung-Bin;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.100-106
    • /
    • 2011
  • PSD(platform screen door) was completely installed at all of Seoul subway station(line 1~8) using 640million people per day by 2010. After installation of PSD, the influence of train induced wind at platform decreased, but is estimated to increase in subway tunnel. In this paper, train induced wind occurred by pass of subway at platform was measured and analyzed using numerical analysis by computational fluid dynamics.

  • PDF

The Strain of Pipe Framed Greenhouse by Typhoon (태풍에 의한 파이프 골조 온실의 변형도)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.99-106
    • /
    • 2002
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the various strains in structural materials. These results can eventually be utilized in the design criteria as well as in the modification of conventional equation for calculating more realistic wind loads. The first data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999 were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation of strain depending on wind pattern could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by way of adopting more efficient instrument with sufficient number of measuring points and accuracy.

Influence of Asymmetric Aerodynamic Loading on Multiple Unit Floating Offshore Wind Turbine (부유식 다수 풍력 발전기에 작용하는 비대칭 공력 하중의 영향)

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.255-262
    • /
    • 2015
  • The present study developed a numerical simulation tool for the coupled dynamic analysis of multiple turbines on a single floater (or Multiple Unit Floating Offshore Wind Turbine (MUFOWT)) in the time domain, considering the multiple-turbine aero-blade-tower dynamics and control, mooring dynamics, and platform motions. The numerical tool developed in this study was designed based on and extended from the single-turbine analysis tool FAST to make it suitable for multiple turbines. For the hydrodynamic loadings of floating platform and mooring-line dynamics, the CHARM3D program developed by the authors was incorporated. Thus, the coupled dynamic behavior of a floating base with multiple turbines and mooring lines can be simulated in the time domain. To investigate the effect of asymmetric aerodynamic loading on the global performance and mooring line tensions of the MUFOWT, one turbine failure case with a fully feathered blade pitch angle was simulated and checked. The aerodynamic interference between adjacent turbines, including the wake effect, was not considered in this study to more clearly demonstrate the influence of the asymmetric aerodynamic loading on the MUFOWT. The analysis shows that the unbalanced aerodynamic loading from one turbine in MUFOWT may induce appreciable changes in the performance of the floating platform and mooring system.

The nonlinear galloping of iced transmission conductor under uniform and turbulence wind

  • Liu, Zhonghua;Ding, Chenhui;Qin, Jian;Lei, Ying
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.465-475
    • /
    • 2020
  • The analytical approach for stability and response of iced conductor under uniform wind or turbulent wind is presented in this study. A nonlinear dynamic model is established to describe the motion of iced conductor galloping. In the case of uniform wind, the stability condition is derived by analyzing the eigenvalue associated with linearized matrix; The first order and second order approximation of galloping amplitude are obtained using multi-scale method. However, real wind has random characteristics essentially. To accurately evaluate the performance of the galloping iced conductor, turbulence wind should be described by random processes. In the case of turbulence wind, the Lyapunov exponent is conducted to judge the stability condition; The probability density of displacement is obtained by using the path integral method to predict galloping amplitude. An example is proposed to verify the effectiveness of the previous methods. It is shown that the fluctuating component of wind has little influence on the stability of iced conductor, but it can increase galloping amplitude. The analytical results on stability and response are also verified by numerical time stepping method.

Influence of Typhoon Landfall and Its Track Characteristics in Gyeongsangbuk-do (경상북도에서 태풍에 의한 영향과 유형별 진로 특성 분석)

  • Park, Doo-Seon;Ho, Chang-Hoi;Hwang, Jongkook
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.525-532
    • /
    • 2008
  • This study has examined influences of tropical cyclone (TC) landfalls on the Gyoengsangbuk-do region, located in southeast of Korea, for the period 1978-2006. This region is known as one of major pass ways of landfalling TCs, and has many cultural properties including Bulguksa, Sukgulam, etc. Thus the influences caused by TCs (i.e., TC damages) may be larger than elsewhere in the nation. Here, TC influence is defined as the cases of strong instantaneous wind speed (${\geq}20ms^{-1}$) and heavy rainfall (${\geq}100mmday^{-1}$) at each station. This study analyzed long-term trends ofTC influences and the relationship with TC tracks are examined. As a result, it is found that large increase of the heavy rainfall cases along the coastal region. By contrast, there are marginal changes in the strong wind speed associated with TC landfalls. Further, it is also found that the cases of the heavy rainfall only are related with TCs passing through the Yellow Sea and the cases of both the strong wind and the heavy rainfall are related with TCs landing from southern Korea.

An efficient method for universal equivalent static wind loads on long-span roof structures

  • Luo, Nan;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.493-506
    • /
    • 2017
  • Wind-induced response behavior of long-span roof structures is very complicated, showing significant contributions of multiple vibration modes. The largest load effects in a huge number of members should be considered for the sake of the equivalent static wind loads (ESWLs). Studies on essential matters and necessary conditions of the universal ESWLs are discussed. An efficient method for universal ESWLs on long-span roof structures is proposed. The generalized resuming forces including both the external wind loads and inertial forces are defined. Then, the universal ESWLs are given by a combination of eigenmodes calculated by proper orthogonal decomposition (POD) analysis. Firstly, the least squares method is applied to a matrix of eigenmodes by using the influence function. Then, the universal ESWLs distribution is obtained which reproduces the largest load effects simultaneously. Secondly, by choosing the eigenmodes of generalized resuming forces as the basic loading distribution vectors, this method becomes efficient. Meanwhile, by using the constraint equations, the universal ESWLs becomes reasonable. Finally, reproduced largest load effects by load-response-correlation (LRC) ESWLs and universal ESWLs are compared with the actual largest load effects obtained by the time domain response analysis for a long-span roof structure. The results demonstrate the feasibility and usefulness of the proposed universal ESWLs method.

Optimization of Wind Power Dispatch to Minimize Energy Storage System Capacity

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1080-1088
    • /
    • 2014
  • By combining a wind turbine with an energy storage system (ESS), we are able to attenuate the intermittent wind power characteristic making the power derived from a wind farm dispatchable. This paper evaluates the influence of the phase delay of the low-pass filter in the conventional smoothing power control on the ESS capacity; longer phase delays require a larger ESS capacity. In order to eliminate the effect of the phase delay, we optimize the power dispatch using a zero-phase low-pass filter that results in a non-delayed response in the power dispatch. The proposed power dispatching method significantly minimizes the ESS capacity. In addition, the zero-phase low-pass filter, which is a symmetrical forward-reverse finite impulse response type, is designed simply with a small number of coefficients. Therefore, the proposed dispatching method is not only optimal, but can also be feasibly applied to real wind farms. The efficacy of the proposed dispatching method is verified by integrating a 3 MW wind turbine into the grid using wind data measured on Jeju Island.