• Title/Summary/Keyword: the increasing rate of resistance

Search Result 479, Processing Time 0.027 seconds

Effect of Respiratory Resistance Mask on Respiratory Function during Treadmill Exercise (트레드밀 운동 시 호흡 저항 마스크가 호흡 기능에 미치는 영향 )

  • Jong-Ho Kang;Tae-Sung ark
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • PURPOSE: Recently, the proportion of respiratory diseases has been increasing worldwide, and deaths from respiratory diseases in Korea are increasing. Maintaining a healthy respiratory function is a crucial factor in preventing respiratory diseases. There are various ways to improve respiratory function, such as respiratory muscle and aerobic exercises. In other countries, respiratory muscle exercise is performed using a respiratory resistance mask, but such research is insufficient in Korea. Therefore, this paper proposes a respiratory exercise program using a respiratory resistance mask. METHODS: This study was conducted by dividing healthy adults in their 20s into a treadmill exercise + respiratory resistance mask group and a treadmill exercise group into an experimental group and a control group. The changes in the subject's physical function before and after exercise were confirmed by cardiopulmonary exercise and pulmonary function tests. RESULTS: As a result of the study, the experimental and control groups increased their physical function significantly (p < .05). On the other hand, when the increase rate according to the group was confirmed, the increase rate of the experimental group was higher. CONCLUSION: Based on this study, it is necessary to develop a respiratory exercise program using respiratory exercise tools such as a respiratory resistance mask and provide it easily to various subjects.

A Study on the Effect of the Components of Cutting Resistance upon Friction between Drill and Inside Wall of Drilled Hole in Drilling (Drill가공시 Drill과 가공구명내벽과의 마찰이 절삭저항성분에 미치는 영향)

  • Koo, Youn-Yoog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.3
    • /
    • pp.28-40
    • /
    • 1985
  • In this study, to check up on the effect of the components of cutting resistance upon friction between drill and inside wall of hole in drilling, the experiment was performed with individual specimen of carbon steel, cast iron, aluminium alloy under various cutting conditions: depth of hole, cutting speed, feed rate, shape and material of specimen. On the basis of the experimental results, the following conclusions are drawn; 1. The components of cutting resis- tance were increased in proportion to the increase of depth of hole owing to frictional resistance of drill margin and chip-jamming. 2. As feed rates increase, torque and thrust were increased. When comparing to the increasing rate for these components respecitively, thrust is higher tendency than torque. 3. As drill diameter increase, torque and thrust were increased. When comparing to the increasing rate for these components respectively, torque is higher tendency than thrust. 4. In the case of torque, the frictional resistance between drill margin and inside wall of drilled hole accounts for about 20 percent of carbon steel, 14 of cast iron, 10 aluminium alloy in drilling. But the effect of thrust force could be negligible. 5. Comparison between the theoretical and experimental results showed a close agreement so far as depth of hole is about three times of drill diameter. But there was a wide difference between them beyond the rane of three times, because of characteristics of the drilling process.

  • PDF

Corrosion Characteristics of Aluminum Die Casting Alloys with Different Scrap Charge Rate (스크랩 장입 비율에 따른 다이캐스팅용 알루미늄 합금의 부식 특성)

  • Kim, Jun-Ho;Lee, Seung-Hyo
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.6
    • /
    • pp.322-329
    • /
    • 2020
  • The utilization of aluminum scrap is a subject of great importance in terms of reducing energy consumption and environmental protection. However, aluminum scrap contains impurities, which can degrade the properties of aluminum alloy, especially corrosion resistance. This study examines the effect of scrap charge rate of aluminum alloys about microstructures and corrosion characteristics. According to the metallographic examinations, Mg2Si tended to become coarser and its uniformity was decreased by increasing aluminum scrap charge rate. The immersion test exhibited corrosion progressed through the eutectic areas due to micro-galvanic interactions. Electrochemical measurements revealed that excess aluminum scrap could reduce the intergranular corrosion resistance of aluminum alloys. Results showed that the scrap charge rate is important factor in the design of corrosion resistance of aluminum die casting alloys.

Electrical Contact Characteristics of Ag-SnO2 Materials with Increased SnO2 Content

  • Chen, Pengyu;Liu, Wei;Wang, Yaping
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2348-2352
    • /
    • 2017
  • The electrical contact characteristics including temperature rise, contact resistance and arc erosion rate of the $Ag-SnO_2$ materials with increased $SnO_2$ content were investigated during the repeated make-and-break operations. The thickness of arcing melting layer reduces by half and the arc erosion rate decreases more than 70% under 10000 times operations at AC 10 A with the $SnO_2$ content increasing from 15 wt.% to 45 wt.%, on one hand, temperature rise and contact resistance increase obviously but could be reduced to the same order of conventional $Ag-SnO_2$ materials by increasing the contact force. The microstructure evolution and the effect of $SnO_2$ on the arc erosion, contact resistance were analyzed.

Electroplating on the Lead Frames Fabricated from Domestic Copper Plate (국산동판을 사용한 리드프레임 도금기술에 관한 연구)

  • Jang, Hyeon-Gu;Lee, Dae-Seung
    • Journal of Surface Science and Engineering
    • /
    • v.19 no.3
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF

Impacts of sludge retention time on membrane fouling in thermophilic MBR

  • Ince, Mahir;Topaloglu, Alikemal
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.245-253
    • /
    • 2018
  • The aim of this study is to investigate the membrane fouling in a thermophilic membrane bioreactor (TMBR) operated different sludge retention times (SRTs). For this purpose, TMBR was operated at four different SRTs (10, 30, 60 and 100 days). Specific cake resistance (${\alpha}$), cake resistance, gel resistance, total resistance, MFI (modified fouling index) and FDR (flux decrease ratio) were calculated for all SRTs. It was observed that flux in the membrane increases with rising SRT although the sludge concentrations in the TMBR increased. The steady state flux was found to be 31.78; 34.70; 39.60 and 43.70 LMH ($Liter/m^2/h$) for the SRTs of 10, 30, 60 and 100 days respectively. The concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) decreased with increasing SRT. The membrane fouling rate was higher at shorter SRT and the highest fouling rate appeared at an SRT of 10 d. Both the sludge cake layer and gel layer had contribution to the fouling resistance, but the gel layer resistance value was dominant in all SRTs.

Uncertainty evaluation in electrochemical noise resistance measurement (전기화학적 노이즈 저항 측정에서의 불확도 평가)

  • Kim, Jong Jip;Kang, Su Yeon
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.220-226
    • /
    • 2013
  • The uncertainty in statistical noise resistance measurement was evaluated for a type 316 stainless steel in NaCl solutions at room temperature. Sensitivity coefficients were determined for measurands or variables such as NaCl concentration, pH, solution temperature, surface roughness, inert gas flow rate and bias potential amplitude. The coefficients were larger for the variables such as NaCl concentration, pH, inert gas flow rate and solution temperature, and they were the major factors increasing the combined standard uncertainty of noise resistance. However, the contribution to the uncertainty in noise resistance measurement from the above variables was remarkably low compared to that from repeated measurements of noise resistance, and thus, it is difficult to lower the uncertainty in noise resistance measurement significantly by lowering the uncertainties related with NaCl concentration, pH, inert gas flow rate and solution temperature. In addition, the uncertainty in noise resistance measurement was high amounting to 17.3 % of the mean, indicating that the reliability in measurement of noise resistance is low.

A Study on the Characteristics of Cathodic Protection by Al-Alloy Sacrificial Anode in Marine Environment (해양환경중에서 A1-합금희생양극에 의한 음극방식특성)

  • 이연호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 1992
  • In this study, cathodic protection experiment was carried out by Al-alloy sacrificial anode in marine environments which have specific resistance($\rho$) if 25~7000$\Omega$.cm and investigated protection potential, current density and loss rate of Al-alloy sacrificial anode. The main results resistance($\rho$) of 400$\Omega$.cm, the cathodic protection potential appears high about-720 mV(SCE). But below specific resistance($\rho$) of 300$\Omega$.cm, the cathodic protection potential appears low about-770 mV(SCE) and simultaneously, cathode is protected sufficiently. 2) The loss rate of Al-Alloy sacrificial anode became large with decreasing specific resistance and increasing the ratio(A sub(c)/A sub(a) of bared surface area of anode and cathode. 3) The loss rate of Al-alloy sacrificial anode(w) to the mean current density of anode(i) is as follows. w=ai+b (a, b : experimental constants)

  • PDF

Effect of Expanded Tobacco Rates on Physico - Chemical Properties of Cigarettes (팽화각초 배합률에 따른 궐련의 이화학적 특성 변화)

  • 김병구;김천석;김기환;정한주;민영근;이태호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.14-19
    • /
    • 1994
  • Cigarettes were prepared using cut tobacco blends containing 5 levels of expanded tobacco. The effect of expanded tobacco content and tobacco weight on the draw resistance, tar, nicotine, static burning rate, net weight, and carbon monoxide deliveries were examined. At the specified hardness, tar, and tricot me significantly decreased with increasing expanded tobacco rates as a consequence of the increasing cigarette draw resistance. In the view of the experts, the smoke analysis of the cigarettes containing the expanded tobacco was investigated.

  • PDF

Wear Resistance Characteristics of Iron System MAG Weld Overlays with Chromium and Niobium Carbide Composite (Cr 및 Nb 복합탄화물에 의한 철계 MAG용접 오버fp이의 내마모 특성)

  • 김종철;박경채
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.54-59
    • /
    • 2002
  • Overlays is a treatment of the surface and near-surface regions of a material to allow the surface to perform functions that are distinct from those frictions demanded far the bulk of the material. Welding, thermal spray, quenching, carburizing and nitration have been used as the surface treatment. Especially, weld overlay is a relatively thick layer of filler metal applied to a carbon or low-alloy steel base metal for the purpose of providing a wear resistant surface. In this study, weld overlay was performed by MAG welding on the base metal(SS400) with filler metal which contain composite powders($Cr_3C_2+Mn+Mo+NbC$) and solid wire(JIS-YGW11). Characteristics of hardness and wear resistance on overlays were analyzed by EDS, EPMA, XRD and microstructures. Carbide formations were $M(Cr, Fe)_7C_3$ and NbC phases. And carbide volume fraction, hardness and specific wear resistance of overlays were increased with increasing powder feed rate and decreasing wire fred rate. Hardness and wear resistance were almost proportioned to carbide volume fraction of overlay.