• Title/Summary/Keyword: the in-plane flow

검색결과 941건 처리시간 0.031초

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

A Numerical Simulation of a Viscous Flow behind a Sea-botton Isolated Ridge in Shallow Water (천해수역에 위치한 3차원 해저돌출물 주위 점성유동장의 수치시뮬레이션)

  • Lee, Young-Gill;Miyata, Headeki;Lee, Guen-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.29-42
    • /
    • 1992
  • 자유표면하에 잠긴 복잡한 3차원 물체 주위의 흐름을 해소하기 위한 수치계산법이 TUMMAC(Tokyo Univ. Modified Marker And Cell)법을 기초로 하여 개발되었다. 임의물체의 no-slip 3차원 물체표면조건을 보다 간단히 처리하기 위하여 "porosity"라는 개념이 도입되었으며, 담수성에 잠겨 있는 해저돌출물 주위의 유동을 계산하여 그 응용성을 검토하였다. 돌출물 후방의 복잡한 와동들의 상호간섭이 잘 시뮬레이션 되었다.시뮬레이션 되었다.

  • PDF

Scalable Message Flow Control Mechanism in SDN (SDN 에서 확장성 있는 메시지 폴로우 제어 메커니즘)

  • Yeom, Cheolwon;Kim, Kangseok;Yeh, Hongjin
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.168-170
    • /
    • 2014
  • SDN(Software Defined Networking)은 프로그래밍을 통해 네트워크 경로 설정과 제어 및 기존에 복잡했던 운용관리를 처리할 수 있게 해주는 기술이다. 하지만 중앙 집중 식으로 관리하는 특성에 따라 병목현상이 발생할 수 있으며, 이는 컨트롤러에 트래픽이 집중되고 제어 명령을 지연시키는 문제가 있다. 본 논문은 이러한 문제점을 개선하고자 확장성 있는 메시지 플로우 제어 메커니즘을 제안한다. 이 방법은 기존 스위치와 다르게 목적지만을 저장하는 Table 을 별도로 관리하여 동일한 목적지로 전송되는 패킷에 대해 반복되는 제어 메시지를 감소시킨다. 이를 통해 컨트롤러의 역할을 스위치로 분산하여 Control Plane 트래픽에 대한 부하를 줄일 수 있고, 패킷 전송 Delay, Flow Setup 동안 발생하는 Latency 의 문제점을 효율적으로 개선 할 수 있다.

스마트 무인기 흡기구 설계 및 성능해석

  • Jung, Yong-Wun;Jun, Yong-Min;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.197-207
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pitor type intake model and plenum chamber. In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+. The analysis results of the total pressure variation and the velocity distribution were illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst flight condition as well as the standard flight condition.

  • PDF

Design Study of Engine Inlet Duct for Measurement Improvement of the Flow Properties on AIP (AIP면 유동측정 정확도 향상을 위한 가스터빈엔진 입구덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sung Don;Kim, Yong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제21권3호
    • /
    • pp.49-55
    • /
    • 2017
  • In this study, gas turbine engine inlet duct was designed to satisfy uniform flow at aerodynamic interface plane (AIP). Haack-series was selected as nose cone profile and duct outer radius($r_o$) was designed to satisfy to match with area change rate between the nose cone and outer duct wall by the 1-D sizing. The design object of the inlet duct wall profile which has the gradual area change rate was uniform Mach number in the core flow region and minimum boundary later thickness at the both inner nose wall and outer duct wall. The flow characteristics inside the inlet duct was evaluated using CFD. The static pressure distribution at the AIP showed uniform pattern within 0.16%. Based on Mach number profile, the boundary layer thickness was 2% of channel height. Kiel temperature rake location was decided less than 100 mm in front of nose cone where the Mach number is less than 0.1 in order to maximize the temperature probe recovery rate.

The Effect of Hydrocarbon Content and Temperature Distribution on The Morphology of Diamond Film Synthesized by Combustion Flame Method (연소 화염법에 의해 합성된 다이아몬드형상에 미치는 탄화수소량과 온도분포의 영향)

  • Kim, Seong-Yeong;Go, Myeong-Wan;Lee, Jae-Seong
    • Korean Journal of Materials Research
    • /
    • 제4권5호
    • /
    • pp.566-573
    • /
    • 1994
  • The diamond synthesis by combustion flame method is considerably affected by the substrate surface temperature and its distribution which are mainly controlled by the ratio of mixed gas, $O_2/C_2H_2$. In order to elucidate the role of gas ratio in the diamond synthetic process by combustion flame, under various gas ratios (R=0.87~0.98; R=ratio of flow-rate of $O_2/C_2H_2$ gas) the substrate temperature was measured by using thermal video system and the morphological change of diamond crystals was analysed by using SEM, Raman spectroscope, and X-ray diffraction method. With increasing the gas ratio, i.e., decreasing the hydrocarbon content, the nucleation rate of diamond crystal was lowerd. It was also found that the morphology of diamond crystals changed from the cubo-octahedron type consisting of (100), (111) plane to the octahedron type of (111) plane. The increase of the substrate temperature consistently resulted in the increase of the nucleation rate as well as the growth rate of diamond crystals in which the surface of diamond crystal dominantly consisting of (100) plane.

  • PDF

Effects of Corrugated GFRP Shear Connector Width and Pitch on In-plane Shear Behavior of Insulated Concrete Sandwich Wall Panels (CSWP) (파형 GFRP 전단연결재의 폭 및 너비에 따른 중단열 벽체의 면내전단거동)

  • Jang, Seok-Joon;Oh, Tae-Sik;You, Young-Chan;Kim, Ho-Royng;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • 제26권4호
    • /
    • pp.421-428
    • /
    • 2014
  • This paper describes the experimental results of insulated concrete sandwich wall panels (CSWP) with corrugated glass fiber-reinforced polymer (GFRP) shear connectors under in-plane shear loading. Corrugated GFRP shear connectors were used to improve the thermal property of insulated CSWP and to achieve composite action between the interior and exterior concrete wall panels. Test specimens were consist of three concrete panels with two insulation layers between concrete panels and middle concrete panels was loaded in the direction of gravity. To evaluate the effects of insulation types (extruded polystyrene, XPSS and expanded polystyrene, EPS), shear connector pitch (300 and 400 mm) and width (10 and 15 mm) on in-plane shear behavior of insulted CSWP, failure mode and shear flow-average relative slip relationship of specimens were investigated. Test results indicate that the bond stress between concrete panel and insulation is considerable initially. Especially in case of insulated CSWP without shear connector, initial stiffness of CSWP with XPSS is superior to that of CSWP with EPS. The shear connector's contribution to in-plane shear performance of insulated CSWP depends on the type of insulation.

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

The Combustion Characteristics at Primary Zone of Lean Premixed low NOx Combustor (저 NOx 희박연소기의 주연소영역에서의 연소특성 연구)

  • Lim, A.H.;Ahn, K.Y.;Kim, H.S.;Kim, Y.M.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.314-319
    • /
    • 2003
  • The concept of lean-premixed combustion in gas turbine combustor operation has become a standard in recent years as an effective means to meet stringent enviromental standards on NOx emissions. The combustion characteristics of 75 kW class lean premixed combustor were investigated at the conditions of high temperature and ambient pressure. The exit temperature and emissions of CO and NOx were measured at the center of exit plane. The high temperature air of $550K{\sim}650K$ was supplied through air preheater. As expected, experimental results indicate that NOx emission was increased and CO emission was decreased by increasing inlet air temperature. But CO emission measured at the center of exit plane was increased because of the non-uniform radial direction profiles. The Semi-Empirical Correlation method was applied to obtain the design point emissions of NOx and CO. Also the flame temperature, CO and NOx emissions were measured along the centerline of liner at 650K inlet air temperature to determine the position of dilution holes.

  • PDF

Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows (탠덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측)

  • Noh, Jun-Gu;Kim, Jin-han
    • The KSFM Journal of Fluid Machinery
    • /
    • 제7권2호
    • /
    • pp.27-34
    • /
    • 2004
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed difference according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical result. The numerical results agree with the measured data in respect of their tendency. It turned out that $0\%$ of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for $75\%$ case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.