• Title/Summary/Keyword: the in-plane flow

Search Result 941, Processing Time 0.033 seconds

Motion of Charged Micro-particle Immersed in Liquid Crystal Controlled by In-plane Field for Electro Paper Display

  • Baik, In-Su;Choi, Ju-Hwan;Jung, Byoung-Sun;Jeon, Sang-Youn;Song, Eun-Kyoung;Lee, Seung-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • We have studied the motion of charged micro-particles that are immersed in a nematic liquid crystal (LC) and controlled by in-plane field. The LC is an anisotropic liquid such that the viscosity of the LC depends on flow direction, phase of the LC, and temperature, which affects the motion of the charged particles under the influence of electric field. This study shows that the motion of charged particles mainly depends on the applied voltage and the LC phase, but does not show any significant influence from the initial alignment of LC, although one may expect directional difference in drag force due to interaction between LC and particle. The viscosity changes due to temperature variations in nematic phase also show no signification influence on particle velocity when compared to the effect from varying in-plane field strength.

Three-Dimensional Nonlinear Analysis of Reinforced Concrete Beam with Shear Reinforcements (전단보강된 철근 콘크리트 보의 3차원 거동해석)

  • 주영태;정헌주;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.431-436
    • /
    • 2001
  • Lateral confining effect due to the existence of the shear reinforcements in R.C. beam is investigate in a numerical way. For the purpose, a three dimensional constitutive model of concrete is developed based on the elasto-plasticity using non-associated plastic flow rule to control the excessive inelastic dilatancy. The plastic flow direction is determined based on the associated plastic flow direction in a way to adjust the directional angle between the two normal vector components along the hydrostatic and deviatoric axis in a meridian plane in which the loading function prescribed. The current formulation is combined with the four parameter elasto-plastic triaxial concrete model recently developed. The resulting elasto-plastic triaxial concrete model predicts the fundamental behaviors of concrete under different confining levels and the 4-points flexural test of a beam with shear reinforcements, compares with the experimental results.

  • PDF

An Experimental Study on the Flow Characteristics of a Swirl-Jet Diffuser (공장환기용 선회 제트 디퓨저의 유동 특성에 관한 실험 연구)

  • Lee, C.S.;Jurng, J.;Jeong, S.Y.;Hong, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1994
  • An experimental study is performed on the flow characteristics of a swirl-jet diffuser for factory ventilation. Swirl number ranges from 0(nonswirl jet) to 0.6 when the angle of swirl vane is 60 degree. As swirl becomes strong, the maximum velocity in the plane perpendicular to jet axis decreases fast and the uniformity of velocity becomes good, particularly in the ventilated area. The similarity in velocity profiles has been found for axial velocity from even when swirl number equals 0.6. The flow characteristics of the swirl-jet which has the swirl number of 0.6 is thought to be the best among these three swirl numbers for factory ventilation. However, the pressure drop in the diffuser increases as the swirl becomes strong. This should be considered in the design of the total ventilation system including a duct system.

  • PDF

DEVELOPMENT OF AN LES METHODOLOGY FOR COMPLEX GEOMETRIES

  • Merzari, Elia;Ninokata, Hisashi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.893-906
    • /
    • 2009
  • The present work presents the development of a Large Eddy Simulation (LES) methodology viable for complex geometries and suitable for the simulation of rod-bundles. The use of LES and Direct Numerical Simulation (DNS) allows for a deeper analysis of the flow field and the use of stochastical tools in order to obtain additional insight into rod-bundle hydrodynamics. Moreover, traditional steady-state CFD simulations fail to accurately predict distributions of velocity and temperature in rod-bundles when the pitch (P) to diameter (D) ratio P/D is smaller than 1.1 for triangular lattices of cylindrical pins. This deficiency is considered to be due to the failure to predict large-scale coherent structures in the region of the gap. The main features of the code include multi-block capability and the use of the fractional step algorithm. As a Sub-Grid-Scale (SGS) model, a Dynamic Smagorinsky model has been used. The code has been tested on plane channel flow and the flow in annular ducts. The results are in excellent agreement with experiments and previous calculations.

The Noise Analysis of Ship HVAC System Based on GUI Modeling (GUI Modeling을 기반으로한 선박의 HVAC System 소음 해석)

  • 이철원;김노성;최수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1300-1305
    • /
    • 2001
  • One of the main noise sources in cabin onboard ships is HVAC system. Up to now, the HVAC system designer manually calculates the HVAC system noise, or uses the program that is generally based on text user interface. In such a case, it is difficult to use the program and also to obtain the flow induced noise. In this study, the HVAC noise analysis program has been developed, which is based on GUI user interface that include 3.D modelling and model modification modules. For calculation of the insertion loss of HVAC system elements, NEBB experimental data and plane wave theory are used. And in order to obtain the flow rate information in each HVAC elements which is used to calculate the flow induced noise calculation, Global Converging Newton-Rapson Method is used.

  • PDF

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

A Numerical Study on the Heat Transfer Characteristics in an Internally Finned Circular Tube Flow (내부핀이 부착된 원형관유동에서의 열전달특성에 관한 수치적연구)

  • Pak, H.Y.;Park, K.W.;Choi, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.267-278
    • /
    • 1996
  • Steady, laminar, forced convection flow and heat transfer in the entrance region of an internally finned circular duct with a finite thermal conductivity has been analyzed numerically. The problem under investigation is a three-dimensional boundary layer problem, and is solved by employing a marching-type procedure which involves solution of a series of 2-dimensional elliptic problems in the cross-stream plane. Two types of inlet hydrodynamic conditions are considered : (a) uniform velocity flow and (b) fully developed flow. From the above inlet conditions, the effects of the fin height(h), fin number(N) and conductivity ratio($k_r$) on the flow and thermal characteristics are investigated. The numerical results show that the height and number of fins, and ratio of the solid to fluid thermal conductivity have pronounced effect on the solution. Considering pressure drop, optimized dimensionless fin height is 0.4.

  • PDF

Numerical study of Three-Dimensional Viscous Flow and Compression Wave Induced by the High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철 주위의 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.23-31
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the viscous flow field and compression wave around the high speed train which is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation owing to the viscous interaction around the train was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed.

  • PDF

A Parametric Study for the Design of Flush inlet (Flush 흡입관 설계를 위한 매개변수 연구)

  • Lee J. G.;Jung S. Y.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.132-138
    • /
    • 2004
  • Flush inlet, which has been chosen for modem air vehicles to take advantage of structure compactness and small RCS, gives rise to some aerodynamic problems such as flow separation and distortion due to vortices which deteriorate the performance of both inlet and engine. In this study, pressure recoveries at inlet exit plane were evaluated through numerical analyses of 3D turbulent flow for various inlet shapes and flight conditions. Inlet shape was controlled by changing ramp angle and width of throat, and effects of mass flow rate and angle of attack were investigated.

  • PDF

A Study on the Surface Modification of Graphite by CVD SiC -Growth Characteristics of SiC in a Horizontal CVD Reactor- (화학증착 탄화규소에 의한 흑연의 표면개질 연구 -수평형 화학증착반응관에서 탄화규소 성장특성-)

  • 김동주;최두진;김영욱;박상환
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.419-428
    • /
    • 1995
  • Polycrystalline silicon carbide (SiC) thick films were depostied by low pressure chemical vapor deposition (LPCVD) using CH3SiCl3 (MTS) and H2 gaseous mixture onto isotropic graphite substrate. Effects of deposition variables on the SiC film were investigated. Deposition rate had been found to be surface-reaction controlled below reactor temperature of 120$0^{\circ}C$ and mass-transport controlled over 125$0^{\circ}C$. Apparent activation energy value decreased below 120$0^{\circ}C$ and deposition rate decreased above 125$0^{\circ}C$ by depletion effect of the reactant gas in the direction of flow in a horizontal hot wall reactor. Microstructure of the as-deposited SiC films was strongly influenced by deposition temperature and position. Microstructural change occurred greater in the mass transport controlled region than surface reaction controlled region. The as-deposited SiC layers in this experiment showed stoichiometric composition and there were no polytype except for $\beta$-SiC. The preferred orientation plane of the polycrystalline SiC layers was (220) plane at a high reactant gas concentration in the mass transfer controlled region. As depletion effect of reactant concentration was increased, SiC films preferentially grow as (111) plane.

  • PDF