• Title/Summary/Keyword: the ground vibrations

Search Result 166, Processing Time 0.025 seconds

Evaluation method of isolation performance for MIMO isolation table using singular value of transmissibility matrix (전달율 행렬의 특이치를 이용한 다입력/다출력 제진대계의 절연성능 평가법)

  • Sun, Jong-Oh;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.324-329
    • /
    • 2012
  • Isolation tables are widely used for precision equipments and their isolation performances have been usually expressed and evaluated by transsmissibility. However, transmissibility is a concept for 1-degree of freedom(DOF) system. In practice, isolation tables are supproted by more than 4 springs. Each spring is subjected to vertical and horizontal ground vibrations, and also the table has more than 1-DOF. Therefore, isolation tables should be treated as multi-input/multi-output(MIMO) system of which isolation performance is expressed by transmissibility matrix. However, the matrix is too complicated to be an index for a system. In this paper, maximum singular value of transmissibility matrx is suggested as a simple performance index of a MIMO isolation system. Physical meaning of singular value is explained using a simple a 2-DOF isolation table. Furthermore, maximum singular values of passive, 3-DOF active and 6-DOF active isolation tables are obtained through experiments, and their meaning are explained and compared with each other.

  • PDF

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel (단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Kim, Kyoung-Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.403-415
    • /
    • 2014
  • Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.

Experimental Study of the Effect of Vibration on the Geomunoreum Lava Tube System in Jeju (제주 거문오름 용암동굴계의 진동영향에 관한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Ahn, Ung-San;Lim, Hyun-Muk;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.327-345
    • /
    • 2020
  • The effects of ground vibration on lava tubes during construction were studied to aid design of management and preservation measures for lava tubes. Ground conditions were assessed by RMR (Rock mass rating) and Q-system classifications for the Geomunoreum lava tubes, and vibration velocity was measured during in situ blasting tests in the Manjanggul and Yongcheondonggul lava tubes. Results indicate that the higher the rock quality, the greater the effect of vibration, although there is no clear linear relationship due to ground heterogeneity. A relationship derived between vibration velocity (PPV) and intensity (dB(V)) on the basis of blasting tests indicates that a vibration level of < 0.285 cm/sec meets the regulatory limit of 0.371 cm/sec and 65 dB(V) during daytime, and 0.285 cm/sec and 60 dB(V) during night. For blasting vibrations, square- and cube-root scaled distances are linearly correlated, with R2 ≥ 0.76. On the basis of this correlation, explosive-charge weights meeting the 0.2 cm/sec vibration criterion for cultural heritage were estimated to be 2.88 kg at 50 m distance, and 11.52 kg at 100 m.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Design approach of passive vibration control using damping tape for quadrotor drone in hover (제자리 비행 조건에서 쿼드로터의 감쇠 테이프를 이용한 수동적 진동 제어 설계 방법 연구)

  • Sejun Kim;Hyungmo Kim;Seongwoo Cheon;Sungjun Kim;Haeseong Cho;Lae-Hyong Kang
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • This paper presents a design approach for passive vibration control to reduce vertical vibrations transmitted to the control unit during hovering flight of a quadrotor drone. Ground vibration test simulation based on finite element model was performed for forced vibration analysis of the quadrotor drone. First, modal analysis was performed to evaluate dynamic characteristics. Forced vibration response analysis was then performed to obtain the steady-state response within the operating frequency range under the hovering flight condition. Furthermore, to obtain the vibration reduction effect, a viscous damping tape was applied at positions that could induce vibrations transmitted to the control unit under the same conditions. Such a passive vibration control approach was investigated. Relevant vibration reduction effect was assessed with respect to the application of damping materials and the attachment position.

The Underwater Noise of Fishing Gears in Operation (망어구의 수중소음에 관한 연구)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1980
  • An underwater recording system was designed to measure the sound spectra of the underwater noises produced by fishing gears in operation. Recorded were noi~es from three types of fishing gears: an anchovy set net, three anchovy boat seine net and a stern trawlnet. Acoustic analysis were made using a heterodyne analyzer, a digital frequency analyzer and a level recorder. The no;'e produced by the anchovy set net was found in the high frequency region of the onset of ambient noise spectrum with a slope of - 6 dB/octave. Here the ambient noise spectrum is higher, though similar in shape, than Knudsen spectrum, and is attributed to the breaking action of the coastal wave. Measured noise spectra during the fishing operations of the anchovy boat seine nets are attributed to the background noise of the sea in the presence of the fishing vessels. The frequency distribution of the noise was 20~5, 000 Hz in the case of two steel anchovy boat seiners, and 20-3,000 Hz in the case of the wooden anchovy boat seiner. The predominant frequency range was 250~350 Hz and maximum sound pressure level was 122 dB (re $1\muPa$) in the case of the steel boat and ] 17 dB in the case of the wooden boat. The noises produced by the trawl fishing gears are remarkably higher than the background noi~e in the presence of the fishing vessel. The frequency distribution of the noi~e was 20-6,300 Hz. The predominant frequency range was 100~200 Hz and maximum sound pressure level was 137 dB ( re $1\muPa$) . The noise spectra were not so much different from that caused by vibrations of the towing cable and the structure of the ground rope of the trawl net towed in an experimental tank.

  • PDF

Estimation of liquid limit of cohesive soil using video-based vibration measurement

  • Matthew Sands;Evan Hayes;Soonkie Nam;Jinki Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2023
  • In general, the design of structures and its construction processes are fundamentally dependent on their foundation and supporting ground. Thus, it is imperative to understand the behavior of the soil under certain stress and drainage conditions. As it is well known that certain characteristics and behaviors of soils with fines are highly dependent on water content, it is critical to accurately measure and identify the status of the soils in terms of water contents. Liquid limit is one of the important soil index properties to define such characteristics. However, liquid limit measurement can be affected by the proficiency of the operator. On the other hand, dynamic properties of soils are also necessary in many different applications and current testing methods often require special equipment in the laboratory, which is often expensive and sensitive to test conditions. In order to address these concerns and advance the state of the art, this study explores a novel method to determine the liquid limit of cohesive soil by employing video-based vibration analysis. In this research, the modal characteristics of cohesive soil columns are extracted from videos by utilizing phase-based motion estimation. By utilizing the proposed method that analyzes the optical flow in every pixel of the series of frames that effectively represents the motion of corresponding points of the soil specimen, the vibration characteristics of the entire soil specimen could be assessed in a non-contact and non-destructive manner. The experimental investigation results compared with the liquid limit determined by the standard method verify that the proposed method reliably and straightforwardly identifies the liquid limit of clay. It is envisioned that the proposed approach could be applied to measuring liquid limit of soil in practical field, entertaining its simple implementation that only requires a digital camera or even a smartphone without the need for special equipment that may be subject to the proficiency of the operator.

Vertical Vibration Decrease Effect of Slab in Shear-Wall Structures According to Property and Size of Structural Members (전단벽식 공동주택의 부재 물성치 및 크기 변화에 따른 슬래브 수직진동 저감 효과)

  • Chun Ho-Min;Yoo Seung-Min
    • Journal of the Korean housing association
    • /
    • v.17 no.3
    • /
    • pp.61-69
    • /
    • 2006
  • Vertical vibrations on the slab of buildings are affected by types of vibration sources, transfer paths, and the material property and the size of members. Among these parameters, the vibration sources and the transfer path can not be controlled, but the property and the size of members can be controlled in the phase of design the members. In this study, the vibration responses according to the property and size of members were obtained by using a prediction program based on dynamic-stiffness matrix. Three parameters which are not usually considered as major factors for architecral planning were selected fur these analyses. They are the strength of materials, the thickness of wall and the thickness of slab. The ground vibration source located near a building was used as vibration input data in the analyses. This study has its originality on presenting appropriate property and size of structural members in order to reduce vertical vibration of slab in shear-wall structures. Analysing the results from the vibration estimation program according to the variations of parameters, the appropriate ratio among the sizes of structural members were proposed. From these results, the vibration level on the slab which is not constructed yet would be predicted and the vibration peak level can be reduced or shifted into the desirable frequency range. Therefore, the vertical vibration could be controlled in the phase of designing buildings.

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.

A Study of the Vibration Safety Criterion on the Dynamic Behavior of Buried Pipeline with the Free Ends (양단자유 경계조건을 가진 매설관의 동적거동에서 진동안전 기준에 관한 연구)

  • 이병길;정진호;장봉현;안명석
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.13-26
    • /
    • 2004
  • This work reports results of our study on the dynamic response of buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction with a boundary condition of free ends. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of the free vibration. In order to investigate the response on the earthquake, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the farced vibration. We have also completed the computer program to simulate the time-displacement graphs of the pipe lines with free ends for both cases of vibrations.