• Title/Summary/Keyword: the ground vibrations

Search Result 166, Processing Time 0.023 seconds

The Influence of Ground Vibration Caused by Pile Driving on Power Line Tower Foundation (항타 진동이 송전탑 기초에 미치는 영향 연구)

  • Park, Jung-Bong
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.42-47
    • /
    • 2009
  • Ground vibrations caused by pile driving or explosive blasting can affect the stability of power line tower and its foundation. Because the characteristics of ground vibrations generally depend on the distances from the blast, the ground vibrations should be controlled by taking the distance into account. In this study, ground vibration levels were measured at the foundation of a power line tower and on ground surface adjacent to the tower. The relationships between the dominant frequencies of the ground vibrations that were measured at both locations were comparatively investigated.

Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large-scale cooling towers in NPPs

  • Lin, Feng;Jiang, Wenming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1402-1411
    • /
    • 2018
  • Nuclear-related facilities can be detrimentally affected by ground vibrations due to the collapse of adjacent cooling towers in nuclear power plants. To reduce this hazard risk, a design-oriented acceleration response spectrum (ARS) was proposed to predict the dynamic responses of nuclear-related facilities subjected to ground vibrations. For this purpose, 20 computational cases were performed based on cooling tower-soil numerical models developed in previous studies. This resulted in about 2664 ground vibration records to build a basic database and five complementary databases with consideration of primary factors that influence ground vibrations. Afterwards, these databases were applied to generate the design-oriented ARS using a response spectrum analysis approach. The proposed design-oriented ARS covers a wide range of natural periods up to 6 s and consists of an ascending portion, a plateau, and two connected descending portions. Spectral parameters were formulated based on statistical analysis. The spectrum was verified by comparing the representative acceleration magnitudes obtained from the design-oriented ARS with those from computational cases using cooling tower-soil numerical models with reasonable consistency.

Parametric study on the impact of traffic-induced vibrations on residential structures in Istanbul, Turkey

  • A. Yesilyurt;M.R. Akram;A. Can Zulfikar;H. Alcik
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.87-100
    • /
    • 2024
  • Traffic-induced vibrations (TIVs) possess the potential to induce structural damage in both historical and critical edifices. Recent investigations have underscored the adverse impact of TIVs within buildings, manifesting as a deleterious influence on the quality of life and operational efficiency of occupants. Consequently, these studies have dichotomized TIVs into two primary limit categories: the threshold for vibrations capable of causing structural damage and the limit values associated with human comfort. In this current research endeavor, an exhaustive analysis of peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and the frequency spectrum of ground motions originating from diverse traffic sources has been conducted. Furthermore, the detrimental repercussions of these vibrations on structures, gauged through the assessment of the peak particle velocity (PPV) parameter, have been systematically evaluated. The findings of this study elucidate that TIVs within the examined structures do not attain magnitudes conducive to structural compromise; however, the levels surpassing human comfort limits are evident, attributable to specific sources and distances. Moreover, this investigation sheds light on the absence of comprehensive criteria and guidelines pertaining to the assessment of TIVs in structures within the Turkish Building Seismic Design Code 2018. It seeks to raise awareness among building constructors about the critical importance of addressing this issue, emphasizing the imperative for guidelines in mitigating the impact of TIVs on both structural integrity and human well-being.

Ground vibrations due to underground trains considering soil-tunnel interaction

  • Yang, Y.B.;Hung, H.H.;Hsu, L.C.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.157-175
    • /
    • 2008
  • A brief review of the research works on ground vibrations caused by trains moving in underground tunnels is first given. Then, the finite/infinite element approach for simulating the soil-tunnel interaction system with semi-infinite domain is summarized. The tunnel is assumed to be embedded in a homogeneous half-space or stratified soil medium. The train moving underground is modeled as an infinite harmonic line load. Factors considered in the parametric studies include the soil stratum depth, damping ratio and shear modulus of the soil with or without tunnel, and the thickness of the tunnel lining. As far as ground vibration is concerned, the existence of a concrete tunnel may somewhat compensate for the loss due to excavation of the tunnel. For a soil stratum resting on a bedrock, the resonance peak and frequency of the ground vibrations caused by the underground load can be rather accurately predicted by ignoring the existence of the tunnel. Other important findings drawn from the parametric studies are given in the conclusion.

Effects of Artificial Vibrations on Strength and Physical Properties of Curing Concrete (인공진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 임한욱;정동호;이상은
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • The effects of blasting and ground vibratons on curing concrete have not been well studied. As a results unrealistic and costly ground vibration constraints have been placed on blasting and piling when it occurs in the vicinity of curing concrete. To study the effects of ground vibrations, a shaking table was made to produce peak particle velocities in the nearly same frequency range as found in construction blasting. Concrete blocks of 33.3X27.7X16.2cm were molded and placed on the shaking table. Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses were applied at two hour intervals for thirty seconds. Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity, tensile and uniaxial compressive strength. Test results showed that the vibrations in curing concrete generally have effects on the uniaxial compressive strength or physical properties of the concrete.

  • PDF

Experimental Study for Prediction of Ground Vibration Responses by the Low-vibration Pile Driving Methods (저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구)

  • Kang, Sung-Hoo;Jeoung, Sug-Kyu;Park, Sun-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • This study investigated the SIP-method as a low-vibration, low-noise engineering method. The ground vibrations caused by the SIP-method were measured and analyzed in each step. From the analysis results, quantitative ground vibration values and reliable vibration estimation equations were proposed. Furthermore, the ground vibrations caused by the SIP-method were compared with the ground vibrations caused by other methods presented by existing studies. Based on the vibration estimation equation with 50 % reliability, the ground vibration values by the SIP-method at the distance of 10~150 m corresponded to 17~57 % of the ground vibration values by the equation proposed by Attewell & Famer, and 14~96 % of the ground vibration values by the equation proposed by Prof. Park in his study using a diesel drop hammer. These results showed that the ground vibration reduction effect of the SIP-method was higher those of other general engineering methods. Finally, the permissible scope of work using the SIP-method which meets the domestic vibration standards was presented.

In-situ measurement of railway-traffic induced vibrations nearby the liquid-storage tank

  • Goktepe, Fatih;Kuyuk, Huseyin S.;Celebi, Erkan
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.583-589
    • /
    • 2017
  • In this study, result of a field investigation of railway traffic-induced vibrations is provided to examine acceptability levels of ground vibration and to evaluate the serviceability of a liquid-storage tank. Free field attenuation of the amplitudes as a function of distance is derived by six accelerometers and compared with a well-known half-space Bornitz's analytical solution which considers the loss of the amplitude of waves due to geometrical damping and material damping of Rayleigh. Bornitz's solution tends to overlap vertical free field vibration compared with in-situ measured records. The vibrations of the liquid-storage tank were compared with the USA, Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations and with the criteria in DIN 4150-3 German standard. Comparing the thresholds stated in DIN 4150-3, absolute peak particle velocities are within the safe limits, however according to FTA velocity level at the top of the water tank exceeds the allowable limits. Furthermore, it is intended to indicate experimentally the effect of the kinematic interaction caused by the foundation of the structure on the free-field vibrations.

Centrifuge Simulation of Wave Propagation and Isolation Method (환경진동의 지반내 전파특성과 차단에 관한 원심모형실험)

  • Lee, Kang-Il;Kusakabe, O.;Kim, Chan-Kee;Kim, Tae-Hoon;Sul, Jin-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.738-745
    • /
    • 2004
  • There are a number of ways to reduce the ground vibrations, one of which is by installing underground walls. Model tests for ground vibration have been conducted in recent years, but limited attention has been paid to underground wall which can reduce high vibrations. Up to date, only barriers have been actually installed in dry sand because of many unknown factors subsisting on the behavior of the ground. The characteristics of vibration sources, ground conditions and wall barriers have not been well understood yet, therefore centrifugal modeling was adopted to examine all these characteristics. This paper describes a ball dropping system, which can generate a pulse wave propagation through soil mass, and the test results show the effectiveness of underground wall barrier in reducing mechanical vibration.

  • PDF

Prediction of Ground Vibration According to the Priming Location (폭약의 기폭위치에 따른 지반진동 예측)

  • Kim, Seung-Eun;Ryu, Pog-Hyun;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 2010
  • Excavations by blasting in urban area have caused lots of complaints. Hence, special attentions need to be paid to controlling the ground vibrations in designing blasting for those areas. In this study, among the various parameters that can affect the propagation characteristics of ground vibrations, the effect of the priming location of explosive on the ground vibration level was studied for two types of emulsion explosives that had different detonation velocities. Three priming locations of top, middle, and bottom were considered in a charged hole. In the experiment on the effect of detonation velocity, the ground vibration caused by the explosive with a lower detonation velocity showed larger attenuation in the amplitude. The priming locations also affected the ground vibrations levels. The ground vibration level produced from middle priming was found to be larger than the other priming methods under the same blast conditions, but the attenuation of amplitude was also larger in this case. In contrast, the ground vibration level from bottom priming was not larger than the middle priming, but the attenuation was smaller so that the ground vibration was detected at a longer distance.

Dynamic characteristics of cable vibrations in a steel cable-stayed bridge using nonlinear enhanced MECS approach

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.37-66
    • /
    • 2008
  • This paper focuses on the nonlinear vibrations of stay cables and evaluates the dynamic characteristics of stay cables by using the nonlinear enhanced MECS approach and the approximate approach. The nonlinear enhanced MECS approach is that both the girder-tower vibrations and the cable vibrations including parametric cable vibrations are simultaneously considered in the numerical analysis of cable-stayed bridges. Cable finite element method is used to simulate the responses including the parametric vibrations of stay cables. The approximate approach is based on the assumption that cable vibrations have a small effect on girder-tower vibrations, and analyzes the local cable vibrations after obtaining the girder-tower responses. Under the periodic excitations or the moderate ground motion, the differences of the responses of stay cables between these two approaches are evaluated in detail. The effect of cable vibrations on the girder and towers are also discussed. As a result, the dynamic characteristics of the parametric vibrations in stay cables can be evaluated by using the approximate approach or the nonlinear enhanced MECS approach. Since the different axial force fluctuant of stay cables in both ends of one girder causes the difference response values between two approach, it had better use the nonlinear enhanced MECS approach to perform the dynamic analyses of cable-stayed bridges.