• Title/Summary/Keyword: the genetics of individual identification

Search Result 21, Processing Time 0.026 seconds

Development of a Microsatellite Marker Set for the Individual Identification and Parentage Verification of Korean Native Black Goats (재래흑염소 개체식별과 친자확인을 위한 Microsatellite Marker Set 개발)

  • Lee, Sang-Hoon;Kang, Ho-Chan;Lee, Sung-Soo;Lee, Jinwook;Kim, Eun-Ho;Myung, Hyun-Cheol;Kim, Kwan-Woo;Lim, Hyun-Tae
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.912-918
    • /
    • 2020
  • The Korean native black goat (Capra hircus coreanae) is the goat species to be officially registered in Korea under the Food and Agriculture Organization. The object of this study is to establish a set of microsatellite (MS) markers for the individual identification and parentage verification of goats. In this study, we analyzed alleles of MS markers in crosses between Korean native black goats and crossbred goats (n=304 animals), and, based on the diversity of alleles for each marker, we selected 11 MS markers for individual identification and parentage verification. Using these 11 MS markers, the probabilities of different individuals with the same genotype being found within random and half-sib mating populations were 5.58×10-10 and 1.15×10-7, respectively. The parentage verification accuracy was 0.999996 when information about the parents was available and 0.999833 with no information. Thus, even given the total rearing population of 576,150 animals in South Korea, we concluded that these markers could be used for the individual identification and parentage verification of goats. Moreover, by analyzing the genetic relationships between the four lines of Korean native black goats and the crossbred goats, we verified the genetic characteristics of Korean native black goats, confirming their conservation value as a unique genetic resource.

Treatment strategies targeting specific genetic etiologies in epilepsy

  • Kim, Hyo Jeong;Kang, Hoon-Chul
    • Journal of Genetic Medicine
    • /
    • v.18 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Recent genetic advances allow for identification of the genetic etiologies of epilepsy within individual patients earlier and more frequently than ever. Specific targeted treatments have emerged from improvements in understanding of the underlying epileptogenic pathophysiology. These targeted treatment strategies include modifications of ion channels or other cellular receptors and their function, mechanistic target of rapamycin signaling pathways, and substitutive therapies in hereditary metabolic epilepsies. In this review, we explore targeted treatments based on underlying pathophysiologic mechanisms in specific genetic epilepsies.

Individual Identification using The Multiplex PCR with Microsatellite Markers in Swine

  • Kim, Lee-Kung;Park, Chang-Min;Park, Sun-Ae;Kim, Seung-Chang;Chung, Hoyoung;Chai, Han-Ha;Jeong, Gyeong-Yong;Choi, Bong-Hwan
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.205-211
    • /
    • 2013
  • The swine is one of the most widespread mammalian throughout the whole world. Presently, many studies concerning microsatellites in swine, especially domestic pigs, have been carried out in order to investigate general diversity patterns among either populations or breeds. Until now, a lot of time and effort spend into a single PCR method. But simple and more rapid multiplex PCR methods have been developed. The purpose of this study is to develop a robust set of microsatellites markers (MS marker) for traceability and individual identification. Using multiplex-PCR method with 23 MS marker divided 2 set, various alleles occurring to 5 swine breed (Berkshire, Landrace, Yorkshire, Duroc and Korea native pig) used markers to determine allele frequency and heterozygosity. MS marker found 4 alleles at SW403, S0227, SWR414, SW1041 and SW1377. The most were found 10 alleles at SW1920. Heterozygosity represented the lowest value of 0.102 at SWR414 and highest value of 0.861 at SW1920. So, it was recognized appropriate allele frequency for individual identification in swine. Using multiplex-PCR method, MS markers used to determine individual identification biomarker and breed-specific marker for faster, more accurate and lower analysis cost. Based on this result, a scientific basis was established to the existing pedigree data by applying genetics additionally. Swine traceability is expected to be very useful system and be conducted nationwide in future.

A case of sex determination by amplification of SRY and Amelogenin gene in horse (SRY와 Amelogenin gene의 증폭에 의한 말의 성(sex) 결정 예)

  • Cho, Gil-jae;Lee, Sun-young;Yang, Young-jin
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.127-130
    • /
    • 2005
  • The objective of present study was to ascertain sex determination for individual identification, parentage control, and sex chromosome anomalies in horse. PCR amplification products of the equine sex determining region of the Y chromosome gene (SRY) and amelogenin gene (AMEL) were detected by using agarose gel electrophoresis. A normal sire and foal II showed 1 SRY band (430 bp) and 3 AMEL (AMELX, AMELY, and AMELX/Y) band, 175 bp, 160 bp, 190 bp, respectively, and a normal dam and foal I showed a single AMELX band (175 bp). These results enables a quick diagnosis for sex determination prior to cytogenetic analysis.

Validation of 17 Microsatellite Markers for Parentage Verification and Identity Test in Chinese Holstein Cattle

  • Zhang, Yi;Wang, Yachun;Sun, Dongxiao;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.425-429
    • /
    • 2010
  • To develop an efficient DNA typing system for Chinese Holstein cattle, 17 microsatellites, which were amplified in four fluorescent multiplex reactions and genotyped by two capillary electrophoresis injections, were evaluated for parentage verification and identity test. These markers were highly polymorphic with a mean of 8.35 alleles per locus and an average expected heterozygosity of 0.711 in 371 individuals. Parentage exclusion probability with only one sampled parent was approximately 0.999. Parentage exclusion probability when another parent' genotype was known was over 0.99999. Overall probability of identity, i.e. the probability that two animals share a common genotype by chance, was $1.52{\times}10^{-16}$. In a test case of parentage assignment, the 17 loci assigned 31 out of 33 cows to the pedigree sires with 95% confidence, while 2 cows were excluded from the paternity relationship with candidate sires. The results demonstrated the high efficacy of the 17 markers in parentage analysis and individual identification for Chinese Holstein cattle.

DNA Polymorphism Analysis of the HLA-DRB1 Gene Using Polymerase Chain Reaction-Sequence Specific Primer (PCR-SSP) among Korean Subjects

  • Lee, Kyung-Ok;Park, Taek-Kyu;Park, Young-Suk;Oh, Moon-Ju;Kim, Yoon-Jung
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.45-51
    • /
    • 1996
  • Most expressed HLA loci exhibit a remarkable degree of allelic polymorphism, which derives from sequence differences predominantly localized to discrete hypervariable regions of the amino-terminal domain of the molecule. In this study, the HLA-DRB1 genotypes were determined in eighteen control cell lines and 112 unrelated Koreans using the PCR-SSP (Polymerase Chain Reaction-Sequence Specific Primer) technique. 29 specific primer pairs in assigning the DRB1 gene were used. The results of control cells correlated well with the data which was previously reported. The heterozygosity and homozygosity of the DRB1 gene were 0.786 and 0.214, respectively. In a total of 41 different DRB1 alleles and 83 genotypes, the most frequent allele and genotype were DRB1*04 and DRB1*0901/1501, respectively. This study shows that the PCR-SSP technique is relatively simple, fast and a practical tool for the determination of the HLA-DRBI genotypes. Moreover, these results-allele and genotype frequency and heterozygosity of the HLA DRB1 gene-could be useful for database study before being applied to individual identification and transplantation immunity.

  • PDF

Development of a highly effective T-DNA inserted mutant screening method in a Chinese cabbage (Brassica rapa L. spp. pekinensis) reverse genetics system

  • Lee, Gi-Ho;Kang, Yoon-Jee;Yi, Seul-Ki;Lim, Suk-Bin;Park, Young-Doo
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.201-211
    • /
    • 2010
  • We present a highly effective T-DNA inserted gene screening method as part of a reverse genetics model system using the Chinese cabbage (Brassica rapa L. spp. pekinensis). Three-step two-dimensional (2D) matrix strategies are potentially accurate and useful for the identification of specific T-DNA inserted mutants from a large population. To construct our Chinese cabbage model, we utilized a forward genetics screening approach for the abnormal phenotypes that were obtained from transgenic plants of Brassica rapa generated with Agrobacteria tumefaciens containing the pRCV2 vector. From one transgenic plant with an abnormal phenotype, we observed that the st1 gene (which is related to senescence-associated process proteins) contained a T-DNA fragment, and that its expression level was decreased. This T-DNA insert was then used as a control to construct an effective screening pool. As a result, the optimum template concentration was found to be 0.1-1 ng in our PCR strategy. For other conditions, positive changes to the Gibbs free energy prevented the formation of oligo dimers and hairpin loop structures, and autosegment extension gave better results for long fragment amplification. Using this effective reverse genetics screening method, only 23 PCR reactions were necessary to select a target gene from a pool of 100 individual DNAs. Finally, we also confirmed that the sequence we obtained from the above method was identical to the flanking sequence isolated by rescue cloning.

Clinical and Biochemical Evaluation of Institutionalized Population with Mental Retardation or Developmental Delay (정신지체 및 발달지연으로 수용된 인구의 임상, 내분비 및 대사 질환 평가)

  • Kim, Sook-Za;Jeon, Young-Mi;Song, Woong-Ju;Kim, Hak-Sung;Cho, Hwa-Yeon;Kil, Hong-Ryang;Kim, Seung-Hwan
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Purpose: Developmental delay and mental retardation are frequently occurring disorders that present major socio-economic burden on the affected individual's family and society. Both can be congenital or acquired. However, a large number of people are institutionalized without exact diagnosis and, as a result, have not received proper care. Methods: 508 subjects with mental retardation or developmental delay from six institutions in Chung Buk Province were clinically evaluated and screened for metabolic and endocrinologic problems between 2000 and 2012. Results: Clinical genetic disorders were observed in 52 (10.2%) subjects. Cerebral palsy attributed to 21% of the institutionalized. 18 (3.5%) were diagnosed with metabolic disorders and 13 (2.6%) exhibited secondary endocrinologic dysfunction. Over 16% showed metabolic evidence of malnutrition. Conclusion: 21% and 3.5% of the population institutionalized due to mental retardation or developmental delay were afflicted by preventable cerebral palsy and metabolic disorders, respectively. Through early identification of the causes and early treatment, it may be possible to prevent, reduce, or alleviate the disability of many institutionalized individuals. Further research is imperative for establishing guidelines for diagnostic investigation for mental retardation.

  • PDF

The Production Structure of Genetic Information in South Korea (한국의 유전적 정보 생산 구조)

  • Yi Cheong-Ho
    • Journal of Science and Technology Studies
    • /
    • v.5 no.1 s.9
    • /
    • pp.55-92
    • /
    • 2005
  • The factors contributing to the formation of an important scientific concept in South Korea and its circulation in the society are the scientific knowledge that had been already formed, matured, and established in the U.S.A, Europe and Japan and has been introduced into Korea, and the institutions that have been formed during the recent modernization in South Korea. The concept of 'genetic information' cannot be an exception in this context. The concept of genetic information is the one that has been extended and intensified by the genomics and bioinformatics formed and matured through the Human Genome Projects from the former concept of inheritance or heredity within the framework of classical and molecular genetics. The purpose of this study was to find out 'how the production structure of genetic information in South Korea has been formed', under the perspective of the conceptual, epistemic, and institutional holisticity or integratedness in the concept and knowledge production structure idealized in Western advanced nations. The discourse of genetic engineering popular in the mid 1980's in South Korea has catalyzed the development of molecular biology. However, the institutional balance that had been established for the biochemistry departments in Natural Science College and Medical College was not formed between the genetic engineering and genetics departments in South Korea. Therefore, they were unable to achieve the more integrative and macro-level disciplinary impact on life sciences, largely due to institutional lack of the capable (human) genetics departments in some leading Korean colleges of Medicine. In genomics, the cutting-edge reprogramming and restructuring of the traditional genetics in the West, South Korea has not invested, even meagerly, in the infrastructure, fund, and research and development (R & D) for the Basic or First Phase of the research trajectory in the Human Genome Project. Without a minimal Basic Phase, the genomics research and development in Korea has been running more or less for the Advanced or Second Phase. Bioinformatics has started developing in Korea under a narrow perspective which regards it as a mere sub-discipline of information technology (IT). Having developed itself in parallel with genomics, bioinformatics contains its own unique logics and contents that can be both directly and indirectly connected to the information science and technology. As a result, bioinformatics reveals a defect in respect of being synergistically integrated into genetics and life sciences in Korea. Owing to the structural problem in the production, genetic information appears to be produced in a fragmented pattern in the Korean society since its fundamental base is weak and thin. A good example of the conceptual and institutional fragmentedness is that 'the genetics of individual identification' is not a normal integrated part of the Korean genetics, but a scientific practice exercised in the departments of legal medicine in a few Medical Colleges. And the environment contributing to the production structure of genetic information in South Korea today comprises 'sangmyung gonghak'(or life engineering) discourse and non-governmental organization movement.

  • PDF