• 제목/요약/키워드: the flexure strength

검색결과 304건 처리시간 0.031초

티타늄과 니켈-크롬 합금의 도재결합강도 비교 (COMPARISON OF THE BOND STRENGTH OF CERAMICS FUSED TO TITANIUM AND Ni-Cr ALLOY)

  • 박세영;전영찬;정창모
    • 대한치과보철학회지
    • /
    • 제41권1호
    • /
    • pp.89-98
    • /
    • 2003
  • Titanium requires special ceramic system for veneering. Low fusing dental ceramics with coefficients of thermal expansion matching that of titanium have been developed. The purpose of this study was determine the bond strengths between cast and noncast pure titanium and two commercial titanium porcelains, and to compare the results with a conventional nickel-chromium alloy-ceramic system. The bond strengths were determined using a 3-point flexure test. Three-point flexure specimens $25{\times}3{\times}0.5mm$ were prepared After removal of ${\alpha}-case$ layer, they were veneered with $8{\times}3{\times}1mm$ of ceramics at the center of the bar. Specimens were tested in a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The bond strengths between pure titanium and two commercial porcelains exceeded th lower limit of the bonding strength value in ISO 9693(25MPa). 2. There was no significant difference between cast and noncast titanium-porcelain bonds. 3. There was no significant difference between two commercial titanium porcelains. 4. The bond strengths of the titanium-porcelain systems ranged from 73% to 79% of that of the Ni-Cr-conventional porcelain system.

콘크리트 물성 정량화식을 이용한 LTPP 구간의 탄성계수 추정방법 (An Estimation Procedure for Concrete Modulus by Using Concrete Strength Relationships in the LTPP Test Sections)

  • 양성철;조윤호
    • 한국방재학회 논문집
    • /
    • 제10권2호
    • /
    • pp.39-46
    • /
    • 2010
  • 본 연구에서는 조골재, 세골재 및 시멘트량을 달리한 포장용 콘크리트 시편에 대한 강도시험을 통해 물성 정량화 모델식을 제시하였다. 관계식으로는 압축강도와 휨강도, 압축강도와 쪼갬인장강도, 압축강도와 탄성계수 그리고 휨강도와 쪼갬인장강도의 상관관계식을 제시하였다. 모델식에 사용된 데이터는 총 61~81개 조합으로서, 1개 조합에 사용된 시편은 3-4개이었다. 아울러 제시된 상관관계 모델식을 사용하여 고속도로 10개 현장과 국도 4개 현장의 LTPP 구간에서 얻은 코어시편의 탄성계수를 추정하는 절차를 제시하였다. 변동성을 감안하여 본 연구에서는 각 LTPP 구간을 대표하는 탄성계수로서 압축강도에서 탄성계수로 환산한 값과 코어 시편을 사용하여 스트레인게이지에 의해 측정된 탄성계수의 평균값을 사용함으로 인해 코어시편으로부터 발생될 수 있는 측정오차를 줄일 수 있는 방안을 제시하였다.

인장 및 굽힘 복합재료 시험편의 커플링 완화 방안 (Reduction of Coupling in Tensile and Flexure Composite Specimens)

  • 정일섭
    • Composites Research
    • /
    • 제12권2호
    • /
    • pp.82-90
    • /
    • 1999
  • 일반적 직교이방성 복합재료의 기계적 성질을 측정하기 위한 간단한 실험방법으로 편축시험편에 대한 인장시험 또는 굽힘시험이 흔히 사용된다. 이때 재료의 특성상 인장시험편에서는 전단변형이 발생될 수밖에 없으며, 굽힘시험편에서는 비틀림변형을 피할 수 없다. 그러나, 시험장치의 그림 또는 지지대에서의 구속은 커플링에 의한 변형을 수용할 수 없고, 따라서 이에 따른 응력집중을 유발한다. 결과적으로 불균일한 변형장과 응력장을 낳게되어 측정값의 정확도를 저하시키며, 조기 파손으로 인한 복합재료 강도의 과소평가를 가져오게 된다. 본 연구에서는 이를 완화하기 위한 방안으로 시험편 경계면 형상의 변화를 제안한다. 이를 위하여 경사좌표계에서의 적층이론을 유도하며, 각 시험조건에 대한 특성방정식을 구한다. 유한요소해석을 수행하여 특정방정식을 이용하여 수정된 시험편 형상의 유용성을 보인다.

  • PDF

Pontic Design에 따른 임시가공의치의 파절강도에 관한 연구 (FLEXURE STRENGTH OF ACRYLIC RESIN TEMPORARY BRIDGE BY PONTIC DESIGN)

  • 오상천;진태호;동진근
    • 대한치과보철학회지
    • /
    • 제30권1호
    • /
    • pp.65-72
    • /
    • 1992
  • The purpose of this study was to evaluate the flexure stregth of posterior 4-unit acrylic resin bridge with different pontic designs : 1) Conventional pontic 2) Hygienic pontic and 3) Modified hygienic pontic. All specimens were made of self-curing acrylic resin for provisional restorations. Self-curing acrylic resin was filled in a silicone mold by the drop-on technique ; and was polymerized in a pressure spot under 20 psi pressure. The test specimens which were simply shaped posterior 4-unit bridge were 38mm ion 4mm wide, and 35mm thick(connector : 3mm thick). Each specimen was subjected to an increasing load of Instron machine with its tip centered on the specimen at 90-degree angle, and the machine was operated with its load cell of 50kg and its crosshead speed, 2mm/minute : and then the load values at the moment of the fracture of them were recorded. This study was also performed to analyze their stress distributions by the finite element method. The obtained results were as follows : 1. Flexure strength of the hygienic pontic(9.78kg) and the modified hygienic pontic(10.17kg) was higher than that of conventional pontic(6.96kg). But no significant difference was found between the hygienci pontic and the. modified hygienic pontic. The above statistic values were appraised by ANOVA and Duncan's multiple range test 2. Stress was concentrated on the middle portion in every group : and the stress of conventional pontic was found the greatest of all pontic designs.

  • PDF

실란 커플링제를 첨가한 발포폴리스티렌 혼입 폴리메타크릴산 메틸 모르타르의 부착특성 (Bonding Properties of PMMA Mortars Using EPS with Silane Coupling Agent)

  • 이철웅;문경주;최낙운;전성환;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.301-304
    • /
    • 2006
  • The purpose of this study is to evaluate bonding properties of PMMA mortars using EPS with silane coupling agent. PMMA mortars are prepared with various silane coupling agent, and tested for flexural strength test, adhesion test in flexure and tensile strength in underwater and air. It is estimated that the application of silane coupling agent to PMMA mortar is more effective in underwater than air.

  • PDF

Mechanical properties of natural fiber-reinforced normal strength and high-fluidity concretes

  • Kim, Joo-Seok;Lee, Hyoung-Ju;Choi, Yeol
    • Computers and Concrete
    • /
    • 제11권6호
    • /
    • pp.531-539
    • /
    • 2013
  • An experimental investigation of mechanical properties of jute fiber-reinforced concrete (JFRC) has been reported for making a suitable construction material in terms of fiber reinforcement. Two jute fiber reinforced concretes, called jute fiber reinforced normal strength concrete (JFRNSC) and jute fiber-reinforced high-fluidity concrete (JFRHFC), were tested in compression, flexure and splitting tension. Compressive, flexural and splitting tensile strengths of specimens were investigated to four levels of jute fiber contents by volume fraction. From the test results, Jute fiber can be successfully used for normal strength concrete (NSC) and high-fluidity concrete (HFC). Particularly, HFC with jute fibers shows relatively higher improvement of strength property than that of normal strength concrete.

Carbon Nanotube로 강화된 알루미나 기지 복합재료의 제조 및 파괴특성 (Fabrication and Fracture Properties of Alumina Matrix Composites Reinforced with Carbon Nanotubes)

  • 김성완;정원섭;손기선;손창영;이성학
    • 대한금속재료학회지
    • /
    • 제47권1호
    • /
    • pp.50-58
    • /
    • 2009
  • In this study, alumina matrix composites reinforced with carbon nanotubes (CNTs) were fabricated by ultrasonic dispersion, ball milling, mixing, compaction, and sintering processes, and their relative density, electrical resistance, hardness, flexure strength, and fracture toughness were evaluated. 0~3 vol.% of CNTs were relatively homogeneously dispersed in the composites in spite of the existence of some pores. The three-point bending test results indicated that the flexure strength increased with increasing volume fraction of CNTs, and reached the maximum when the CNT fraction was 1.5 vol.%. The fracture toughness increased as the CNT fraction increased, and the fracture toughness of the composite containing 3 vol.% of CNTs was higher by 40% than that of the monolithic alumina. According to observation of the crack propagation path after the indentation fracture test, a new toughening mechanism of grain interface bridging-induced CNT bridging was suggested to explain the improvement of fracture toughness in the alumina matrix composites reinforced with CNTs.

섬유시트 보강 구조체의 거동에 관한 해석적 연구 (Analytical Study of Behavior on Structure Reinforced Fiber Sheet)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제12권2호
    • /
    • pp.107-112
    • /
    • 2009
  • The effective reinforcement methods of structure is required to improve the durability of existing structures. Recently, the continuous fiber sheets to the concrete structures are widely used in the earthquake-proof reinforcement method. This study examines suitability and effect to concrete structure of fiber by FEM analysis. The result of analysis is as follows; All specimens occurred bending tensile failure at the middle span. Ultimate strength of specimen in the RC and reinforced RC specimen were 53.9 kN, 56.3 kN respectively and it was some low by degree 0.89, 0.82 to compare with calculated result. The deflection of specimen at the middle span occurred in approximately 0.2 mm, and did linear behavior in load 20 kN by seat reinforcement. Stiffness did not decrease by occurrence in the finer crack and reinforcement beam's flexure stiffness was increased until reach in failure. To compare calculated value and analysis value, it almost equal behavior in the elastic reign and can confirm effectiveness of analysis. Crack was distributed uniformly by reinforcement of fiber seat at failure and it do not occurred stiffness decreases.

  • PDF

Behaviour and design of composite beams subjected to flexure and axial load

  • Kirkland, Brendan;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.615-633
    • /
    • 2015
  • Composite steel-concrete beams are used frequently in situations where axial forces are introduced. Some examples include the use in cable-stayed bridges or inclined members in stadia and bridge approach spans. In these situations, the beam may be subjected to any combination of flexure and axial load. However, modern steel and composite construction codes currently do not address the effects of these combined actions. This study presents an analysis of composite beams subjected to combined loadings. An analytical model is developed based on a cross-sectional analysis method using a strategy of successive iterations. Results derived from the model show an excellent agreement with existing experimental results. A parametric study is conducted to investigate the effect of axial load on the flexural strength of composite beams. The parametric study is then extended to a number of section sizes and employs various degrees of shear connection. Design models are proposed for estimating the flexural strength of an axially loaded member with full and partial shear connection.

Flexural behavior of partially-restrained semirigid steel connections

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.441-458
    • /
    • 2001
  • We analyzed the experimental and theoretical behavior of a particular type of steel joint designed to connect beam to beam and able to transfer both shear forces and bending moments. This joint is characterized by the use of steel plates and bolts enclosed in the width of the beams. The experimental investigation was carried out characterizing the constituent materials and testing in flexure beams constituted by two portions of beams connected in the middle with the joint proposed. Connections having different characteristics in terms of thickness of plates, number and type of bolts were utilized. Flexure tests allow one to determine the loaddeflection curves of the beam tested and the moment-rotation diagrams of the connections, highlighting the strength and the strain capacity of the joints. The proposed analytical model allows one to determine the moment-rotation relationship of the connections, pointing out the influence of the principal geometrical and mechanic characteristics of single constituents on the full properties of the joint.