• Title/Summary/Keyword: the exterior

Search Result 2,342, Processing Time 0.022 seconds

A Study on the Natural Landscape System and Space Organization of Musudong Village's Yuhoidang Garden(Hageohwon) (무수동 유회당 원림(하거원(何去園))의 산수체계와 공간구성)

  • Shin, Sang-Sup;Kim, Hyun-Wuk;Kang, Hyun-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.106-115
    • /
    • 2011
  • This study, based on (edited in 18th century), analysed the landscape system and cultural landscape elements of Yuhoidang(Hageowon 何去園) Garden in Musu-dong, Daejeon, and the findings are as in the following. YuHoidang(Gwon Yijin 權以鎭) managed Hageowon Garden in Musu-dong, located on the southern branch of Mt. Bomun, to realize his utopia. The completion of Hageowon Garden was only possible due to his installation of a variety of facilities in family gravesite on the hill behind his house: Shimyoso(Samgeunjeongsa 三近精舍, in 1707), Naboji(納汚池, in 1713), Banhwanwon(in 1714) and expended exterior space(in 1727). With regard to the landscape system of the village, the main range of mountains consists of Mt. Daedun, Mt. Odae and Mt. Bomun. The main high mountain of the three is Mt. Bomun, where 'Blue Dragon' hill branches off on the east side(Eungbong), 'White Tiger' in the west(Cheongeun and Sajeong) and Ansan(inner mountain) in the south. The landscape system is featured by 'mountains in back and rivers in front'. The river in the south-west, with its source in Mt. Juryun is called as the 'Stream of outer perfect spot', while the 'Stream of inner perfect spot' rises from Eungbong, passing through the east part of the village into the south-western direction. Banhwanwon Garden(盤桓園) was created with the stream in the east and natural bedrocks, and its landscape elements includes Naboji, Hwalsudam, Gosudae, Sumi Waterfall, Dogyeong(path of peach trees), Odeeokdae(platform with persimmon trees), Maeryong(Japanese apricot tree), springs and observatories. An expanded version of Banhwanwon was Hageowon garden, where a series of 'water-trees-stone' including streams, four ponds, five observation platforms, three bamboo forests and Chukgyeongwon(縮景園) of an artificial hill gives the origin forest a scenic atmosphere. When it comes to semantics landscape elements, there are (1) Yuhoidang to cherish the memory of a deceased parents, (2) Naboji for family unification, (3) Gosudae to keep fidelity, (4) Odeokdae to collect virtue and wisdom, (5) Sumi Waterfall to aspire to be a man of noble character, (6) Yocheondae for auspicious life, (7) Sumanheon and Gigungjae to be in pursuit of hermitic life, (8) Hwalsudam for development of family and study, (9) Mongjeong to repay favor of ancestors, (10) Seokgasan, a symbol of secluded life, (11) Hageowon to enjoy guarding graves in retired life. The spatial composition of Hageowon was realized through (1) Yuhoidang's inside gardens(Naboji, Jucheondang, Odeokdae, Dogyeong, Back yard garden and others) (2) Sumanheon(收漫軒) Byeolup or Yuhoidang's back yard gardens (Seokyeonji, Yocheondae, Sumanheon, Baegyeongdae, Amseokwon and others) (3) Chukgyeongwon of the artificial hill(which is also the east garden of Sumanheon, being composed of Hwalsudam, Sumi Waterfall and Gasan or 12 mountaintops) (4) the scenic spots for unifying Confucianism, Buddhism and Taoism are Cemetry garden in the back hill of the village, the temple of Yeogyeongam, Sansinkak(ancestral ritual place of folk religion) and Geoeopjae(family school). On top of that, Chagyeongwon Garden(借景園) commands a panoramic distant view of nature's changing beauty through the seasons.

Consideration on Shielding Effect Based on Apron Wearing During Low-dose I-131 Administration (저용량 I-131 투여시 Apron 착용여부에 따른 차폐효과에 대한 고찰)

  • Kim, Ilsu;Kim, Hosin;Ryu, Hyeonggi;Kang, Yeongjik;Park, Suyoung;Kim, Seungchan;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • Purpose In nuclear medicine examination, $^{131}I$ is widely used in nuclear medicine examination such as diagnosis, treatment, and others of thyroid cancer and other diseases. $^{131}I$ conducts examination and treatment through emission of ${\gamma}$ ray and ${\beta}^-$ ray. Since $^{131}I$ (364 keV) contains more energy compared to $^{99m}Tc$ (140 keV) although it displays high integrated rate and enables quick discharge through kidney, the objective of this study lies in comparing the difference in exposure dose of $^{131}I$ before and after wearing apron when handling $^{131}I$ with focus on 3 elements of external exposure protection that are distance, time, and shield in order to reduce the exposure to technicians in comparison with $^{99m}Tc$ during the handling and administration process. When wearing apron (in general, Pb 0.5 mm), $^{99m}Tc$ presents shield of over 90% but shielding effect of $^{131}I$ is relatively low as it is of high energy and there may be even more exposure due to influence of scattered ray (secondary) and bremsstrahlung in case of high dose. However, there is no special report or guideline for low dose (74 MBq) high energy thus quantitative analysis on exposure dose of technicians will be conducted based on apron wearing during the handling of $^{131}I$. Materials and Methods With patients who visited Department of Nuclear Medicine of our hospital for low dose $^{131}I$ administration for thyroid cancer and diagnosis for 7 months from Jun 2014 to Dec 2014 as its subject, total 6 pieces of TLD was attached to interior and exterior of apron placed on thyroid, chest, and testicle from preparation to administration. Then, radiation exposure dose from $^{131}I$ examination to administration was measured. Total procedure time was set as within 5 min per person including 3 min of explanation, 1 min of distribution, and 1 min of administration. In regards to TLD location selection, chest at which exposure dose is generally measured and thyroid and testicle with high sensitivity were selected. For preparation, 74 MBq of $^{131}I$ shall be distributed with the use of $2m{\ell}$ syringe and then it shall be distributed after making it into dose of $2m{\ell}$ though dilution with normal saline. When distributing $^{131}I$ and administering it to the patient, $100m{\ell}$ of water shall be put into a cup, distributed $^{131}I$ shall be diluted, and then oral administration to patients shall be conducted with the distance of 1m from the patient. The process of withdrawing $2m{\ell}$ syringe and cup used for oral administration was conducted while wearing apron and TLD. Apron and TLD were stored at storage room without influence of radiation exposure and the exposure dose was measured with request to Seoul Radiology Services. Results With the result of monthly accumulated exposure dose of TLD worn inside and outside of apron placed on thyroid, chest, and testicle during low dose $^{131}I$ examination during the research period divided by number of people, statistics processing was conducted with Wilcoxon Signed Rank Test using SPSS Version. 12.0K. As a result, it was revealed that there was no significant difference since all of thyroid (p = 0.345), chest (p = 0.686), and testicle (p = 0.715) were presented to be p > 0.05. Also, when converting the change in total exposure dose during research period into percentage, it was revealed to be -23.5%, -8.3%, and 19.0% for thyroid, chest, and testicle respectively. Conclusion As a result of conducting Wilcoxon Signed Rank Test, it was revealed that there is no statistically significant difference (p > 0.05). Also, in case of calculating shielding rate with accumulate exposure dose during 7 months, it was revealed that there is irregular change in exposure dose for inside and outside of apron. Although the degree of change seems to be high when it is expressed in percentage, it cannot be considered a big change since the unit of accumulated exposure dose is in decimal points. Therefore, regardless of wearing apron during high energy low dose $^{131}I$ administration, placing certain distance and terminating the administration as soon as possible would be of great assistance in reducing the exposure dose. Although this study restricted $^{131}I$ administration time to be within 5 min per person and distance for oral administration to be 1m, there was a shortcoming to acquire accurate result as there was insufficient number of N for statistics and it could be processed only through non-parametric method. Also, exposure dose per person during lose dose $^{131}I$ administration was measured with accumulated exposure dose using TLD rather than through direct-reading exposure dose thus more accurate result could be acquired when measurement is conducted using electronic dosimeter and pocket dosimeter.

  • PDF