• Title/Summary/Keyword: the electrical resistance probe

Search Result 180, Processing Time 0.026 seconds

Improvement of Optical and Electrical Properties of ITO/Ag/ITO Thin Films for Transparent Conducting Electrode (투명 전극 ITO/Ag/ITO 박막의 광학적 및 전기적 특성 향상 연구)

  • Shin, Yeon Bae;Kang, Dong-Won;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.740-744
    • /
    • 2017
  • Herein we studied the electrical and optical properties of indium tin oxide ITO/Ag/ITO multilayer thin films for application in transparent conducting electrodes. The ITO and Ag thin films were deposited onto soda lime glass (SLG) using radiofrequency and DC-sputtering methods, respectively. The as-synthesized ITO/Ag/ITO multilayer thin films were analyzed using 4-point probe, UV-Visible spectroscopy, and Hall measurement. We observed a rapid increase in electron concentration with increasing Ag thickness. However, electron mobility decreased with increasing Ag thickness. Finally, ITO/Ag/ITO multilayer thin films showed a characteristic low sheet resistance of $18{\Omega}/sq$ and high optical transmittance value (80%) with variation of Ag thickness (5~10 nm).

Characteristics of Indium Zinc Tin Oxide films grown by RF magnetron sputtering for organic light emitting diodes (RF magnetron sputtering system으로 성장시킨 OLED용 IZTO 박막의 특성연구)

  • Park, Ho-Kyun;Jeong, Soon-Wook;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.412-413
    • /
    • 2007
  • We report on the electrical, optical, and structural properties of indium zinc tin oxide (IZTO) anode films grown at room temperature on glass substrate. The IZTO anode films grown by a RF magnetron sputtering were investigated as functions of RF power, working pressure, and process time in pure Ar ambient. To investigate electrical, optical and structural properties of IZTO anode films, 4-point probe, Hall measurement, UV/Vis spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM), and X-ray diffraction (XRD) were performed, respectively. A sheet resistance of $13.88\;{\Omega}/{\square}$, average transmittance above 80 % in visible range were obtained from optimized IZTO anode films grown on glass substrate. These results shown the amorphous structure regardless of RF power and working pressure due to low substrate temperature.

  • PDF

Geophysical Techniques for Underwater Landslide Monitoring (수중 산사태 모니터링을 위한 지반물리탐사기술)

  • Truong, Q. Hung;Lee, Chang-Ho;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.5-16
    • /
    • 2007
  • The monitoring and investigation of underwater landslide help to understand its mechanism, increase the usefuless of design and construction and reduce the losses. This paper presents three high resolution geophysical techniques electrical resisitance, ultrasonic wave reflection imaging, and shear wave tomography conducted to determine the lab-scaled submerged landslide. Electrical resistance profiles of a soil mass obtained by an electrical resistance probe provide detailed information to assess the spatial distribution of the soil mass with milimetric resolution. An ultrasonic wave image obtained by recording the reflections from interfaces of different impedance materials permits detecting layers and landslide with submilimetric resolution. The pixel based image of immersed landslides is created by the inversion of the boundary information achieved from the traveling time of shear waves. The experimental results show that the ultrasonic wave imaging and the electrical resistance can provide complementary information; and their association with S-wave tomography image can produce a 3-D view of the underwater landslide. This study suggests that geophysical techniques may be effective tools for the detection of the underwater landslides and spatial distribution offshore.

Effects of Rapid Thermal Annealing on the Conduction of a-IGZO Films (급속 열처리가 a-IGZO 박막의 전도에 미치는 영향)

  • Kim, Do-Hoon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • The conduction behavior and electron concentration change in a-IGZO thin-films according to the RTA (rapid thermal annealing) were studied. The electrical characteristics of TFTs (thin-film-transistors) annealed by different temperatures were measured. The sheet resistance, electron concentration, and oxygen vacancy of a-IGZO film were measured by the four-point-probe-measurement, hall-effect-measurement, and XPS analysis. The RTA process increased the driving current of IGZO TFTs but the VTH shifted to the negative direction at the same time. When the RTA temperature is higher than $250^{\circ}C$, the leakage current at off-state increased significantly. This is attributed to the increase of oxygen vacancy resulting in the increase of electron concentration. We demonstrate that the RTA is a promising process to adjust the VTH of TFT because the RTA process can easily modify the electron concentration and control the conductivity of IGZO film with short process time.

Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(1) - Surface Morphology Changes as a Function of HF Concentration - (습식 식각에 의한 실리콘 웨이퍼의 표면 및 전기적 특성변화(1) - 불산 농도에 따른 표면형상 변화 -)

  • Kim, Jun-Woo;Kang, Dong-Su;Lee, Hyun-Yong;Lee, Sang-Hyeon;Ko, Seong-Woo;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.316-321
    • /
    • 2013
  • The electrical properties and surface morphology changes of a silicon wafer as a function of the HF concentration as the wafer is etched were studied. The HF concentrations were 28, 30, 32, 34, and 36 wt%. The surface morphology changes of the silicon wafer were measured by an SEM ($80^{\circ}$ tilted at ${\times}200$) and the resistivity was measured by assessing the surface resistance using a four-point probe method. The etching rate increased as the HF concentration increased. The maximum etching rate 27.31 ${\mu}m/min$ was achieved at an HF concentration of 36 wt%. A concave wave formed on the wafer after the wet etching process. The size of the wave was largest and the resistivity reached 7.54 $ohm{\cdot}cm$ at an 30 wt% of HF concentration. At an HF concentration of 30 wt%, therefore, a silicon wafer should have good joining strength with a metal backing as well as good electrical properties.

Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(2) - Relationship between Surface Roughness and Electrical Properties - (습식 식각에 의한 실리콘 웨이퍼의 표면 및 전기적 특성변화(2) - 표면거칠기와 전기적 특성의 상관관계 -)

  • Kim, Jun-Woo;Kang, Dong-Su;Lee, Hyun-Yong;Lee, Sang-Hyeon;Ko, Seong-Woo;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.322-328
    • /
    • 2013
  • The relationship the between electrical properties and surface roughness (Ra) of a wet-etched silicon wafer were studied. Ra was measured by an alpha-step process and atomic force microscopy (AFM) while varying the measuring range $10{\times}10$, $40{\times}40$, and $1000{\times}1000{\mu}m$. The resistivity was measured by assessing the surface resistance using a four-point probe method. The relationship between the resistivity and Ra was explained in terms of the surface roughness. The minimum error value between the experimental and theoretical resistivities was 4.23% when the Ra was in a range of $10{\times}10{\mu}m$ according to AFM measurement. The maximum error value was 14.09% when the Ra was in a range of $40{\times}40{\mu}m$ according to AFM measurement. Thus, the resistivity could be estimated when the Ra was in a narrow range.

Effect of Surface Treatments of Polycrystalline 3C-SiC Thin Films on Ohmic Contact for Extreme Environment MEMS Applications (극한 환경 MEMS용 옴익 접촉을 위한 다결정 3C-SiC 박막의 표면 처리 효과)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • This paper describes the TiW ohmic contact characteristics under the surface treatment of the polycrystalline 3C-SiC thin film grown on $SiO_2/Si(100)$ wafers by APCVD. The poly 3C-SiC surface was polished by using CMP(chemical mechanical polishing) process and then oxidized by wet-oxidation process, and finally removed SiC oxide layers. A TiW thin film as a metalization process was deposited on the surface treated poly 3C-SiC layer and was annealed through a RTA(rapid thermal annealing) process. TiW/poly 3C-SiC was investigated to get mechanical, physical, and electrical characteristics using SEM, XRD, XPS, AFM, optical microscope, I-V characteristic, and four-point probe, respectively. Contact resistivity of the surface treated 3C-SiC was measured as the lowest $1.2{\times}10^{-5}{\Omega}cm^2$ at $900^{\circ}C$ for 45 sec. Therefore, the surface treatments of poly 3C-SiC are necessary to get better contact resistance for extreme environment MEMS applications.

Preparation of EMI Shielding Sheet by PVD Method and Its Characteristic of EMI Shielding Efficiency (PVD법을 이용한 전자파 차폐용 시트 제조 및 차폐효율 특성)

  • Chae, Seong-Jeong;Hong, Byung-Pyo;Lee, Byoung-Soo;Byun, Hong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.527-531
    • /
    • 2010
  • The optimized sheet for EMI shielding was prepared by metal power with Fe series. Then various metal powders were deposited on the sheet by PVD method. Moreover, the PVdF nanofiber membrane was used to compare the characteristic of EMI shielding efficiency of various metal powders. The electrical property was measured by the 4-point probe method. The result from EDS confirmed that the metal powder existed on the sheet. EMI shielding efficiency was analysed by EMI shielding measurement apparatus. The lowest electrical resistance, $641.95{\Omega}{wcdot}cm$, was obtained with $1000\;{\AA}$ deposition of Cu on the sheet. It was revealed that the EMI shielding efficiency increased with increase of the metal deposition thickness. The sheet deposited by Cu with $1000\;{\AA}$ showed the highest EMI shielding efficiency, 32.5 dB.

Effects of Multi-walled Carbon Nanotubes on Electrical and Wear Characteristics of High Impact Polystyrene Composites (HIPS 복합재의 전기적 및 마모 특성에 미치는 다중벽 탄소나노튜브의 영향)

  • Jeong, Yeon-Woo;Kim, Kyung-Shik;Lee, Hyun-Woo;Jeong, Man-Woo;Lee, Jae-Hyeok;Kim, Jae-Hyun;Lee, Hak-Joo;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.95-101
    • /
    • 2015
  • Carbon nanotubes (CNTs) are widely used in polymer composites as filler materials to enhance various characteristics of the composites because of their remarkable mechanical, electrical, and thermal properties. In this study, we investigate the effects of MWCNTs on the electrical and wear characteristics of high-impact polystyrene (HIPS) composites, and compare the results with the effects of carbon black (CB). The HIPS composites are classified as Bare-HIPS, MWCNT-HIPS composites containing 2, 3, 4, and 5 wt% MWCNTs, and CB-HIPS containing 17 wt% CB. Electrical characteristics are evaluated by measuring the surface resistance using a 4-point probe. Wear characteristics are evaluated using the reciprocating wear test, and a chrome steel ball with a curvature of 6.3 mm is used as the counterpart. The results show that the addition of MWCNTs or CB can improve the electrical and wear characteristics of HIPS composites. In the case of MWCNT-HIPS composites, surface resistance, friction coefficient, and specific wear rate decrease as the concentrations of MWCNTs increase. Moreover, the addition of MWCNTs is more effective in improving the electrical and wear characteristics of HIPS composites compared to the addition of CB. To fabricate the HIPS composite with appropriate electrical and wear characteristics, more than 4 wt% MWCNTs is added to HIPS.

Electrical Behavior of the Circuit Screen-printed on Polyimide Substrate with Infrared Radiation Sintering Energy Source (열소결로 제작된 유연기판 인쇄회로의 전기적 거동)

  • Kim, Sang-Woo;Gam, Dong-Gun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.71-76
    • /
    • 2017
  • The electrical behavior and flexibility of the screen printed Ag circuits were investigated with infrared radiation sintering times and sintering temperatures. Electrical resistivity and radio frequency characteristics were evaluated by using the 4 point probe measurement and the network analyzer by using cascade's probe system, respectively. Electrical resistivity and radio frequency characteristics means that the direct current resistance and signal transmission properties of the printed Ag circuit. Flexibility of the screen printed Ag circuit was evaluated by measuring of electrical behavior during IPC sliding test. Failure mode of the Ag printed circuits was observed by using field emission scanning electron microscope and optical microscope. Electrical resistivity of the Ag circuits screen printed on Pl substrate was rapidly decreased with increasing sintering temperature and durations. The lowest electrical resistivity of Ag printed circuit was up to $3.8{\mu}{\Omega}{\cdot}cm$ at $250^{\circ}C$ for 45 min. The crack length arisen within the printed Ag circuit after $10{\times}10^4$ sliding numbers was 10 times longer than that of after $2.5{\times}10^4$ sliding numbers. Measured insertion loss and calculated insertion loss were in good agreements each other. Insertion loss of the printed Ag circuit was increased with increasing the number of sliding cycle.