• Title/Summary/Keyword: the earthquake resistant structure

Search Result 125, Processing Time 0.023 seconds

Fundamental period of infilled RC frame structures with vertical irregularity

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Foskolos, Filippos;Fotos, Alkis;Tsaris, Athanasios K.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.663-674
    • /
    • 2017
  • The determination of the fundamental period of vibration of a structure is essential to earthquake design. Current codes provide formulas for the approximate estimation of the fundamental period of earthquake-resistant building systems. These formulas are dependent only on the height of the structure or number of storeys without taking into account the presence of infill walls into the structure, despite the fact that infill walls increase the stiffness and mass of the structure leading to significant changes in the fundamental period. Furthermore, such a formulation is overly conservative and unable to account for structures with geometric irregularities. In this study, which comprises the companion paper of previous published research by the authors, the effect of the vertical geometric irregularities on the fundamental periods of masonry infilled structures has been investigated, through a large set of infilled frame structure cases. Based on these results, an attempt to quantify the reduction of the fundamental period due to the vertical geometric irregularities has been made through a proposal of properly reduction factor.

Seismic Fragility Analysis of Buildings With Combined Shear Wall-Damper System (벽체-감쇠 복합시스템을 갖는 건물의 지진취약도 분석)

  • Rajibul Islam;Sudipta Chakraborty;Kong, ByeongJin;Kim, Dookie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Structural vibration induced by earthquake hazards is one of the most significant concerns in structure performance-based design. Structural hazards evoked from seismic events must be properly identified to make buildings resilient enough to withstand extreme earthquake loadings. To investigate the effects of combined earthquake-resistant systems, shear walls and five types of dampers are incorporated in nineteen structural models by altering their arrangements. All the building models were developed as per ACI 318-14 and ASCE 7-16. Seismic fragility curves were developed from the incremental dynamic analyses (IDA) performed by using seven sets of ground motions, and eventually, by following FEMA P695 provisions, the collapse margin ratio (CMR) was computed from the collapse curves. It is evident from the results that the seismic performance of the proposed combined shear wall-damper system is significantly better than the models equipped with shear walls only. The scrutinized dual seismic resisting system is expected to be applied practically to ensure a multi-level shield for tall structures in high seismic risk zones.

Dynamic Characteristics and Isolation Performance of Isolation Table System (면진 테이블 시스템의 동적 특성 및 면진성능)

  • ;;;Kurabayashi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.67-74
    • /
    • 2001
  • Structural engineers lately have an interest in the safety for equipments and facility in buildings subjected to earthquake. The stability of cultural assets was not considered for the earthquake induced vibration, while the integrity of structure has been considered through the resistant earthquake design. The purpose of this study aimed to analyze the behavior of isolation device named as \"Isolation table system\" and to evaluate its isolation performance through the experiment study. Isolation table is one of isolation systems to reduce the vibration which was transferred from slab to exhibition table. Experimental result shows that isolation table can reduce the vibration by 80-90% and its behavior is very stable within its maximal stroke.al stroke.

  • PDF

Development of analytical modeling for an energy-dissipating cladding panel

  • Maneetes, H.;Memari, A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.587-608
    • /
    • 2009
  • Modern earthquake-resistant design aims to isolate architectural precast concrete panels from the structural system so as to reduce the interaction with the supporting structure and hence minimize damage. The present study seeks to maximize the cladding-structure interaction by developing an energy-dissipating cladding system (EDCS) that is capable of functioning both as a structural brace, as well as a source of energy dissipation. The EDCS is designed to provide added stiffness and damping to buildings with steel moment resisting frames with the goal of favorably modifying the building response to earthquake-induced forces without demanding any inelastic action and ductility from the basic lateral force resisting system. Because many modern building facades typically have continuous and large openings on top of the precast cladding panels at each floor level for window system, the present study focuses on spandrel type precast concrete cladding panel. The preliminary design of the EDCS was based on existing guidelines and research data on architectural precast concrete cladding and supplemental energy dissipation devices. For the component-level study, the preliminary design was validated and further refined based on the results of nonlinear finite element analyses. The stiffness and strength characteristics of the EDCS were established from a series of nonlinear finite element analyses and are discussed in detail in this paper.

Shaking Table Tests for Evaluation of Seismic Performance of L-type Caisson Quay Walls (L형 케이슨 안벽 구조물의 내진성 평가를 위한 진동대 시험)

  • 한진태;황재익;이용재;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.148-156
    • /
    • 2003
  • Shaking table tests and pseudo-static analysis were performed, in this study, on newly-designed aseismatic L-type caisson quay walls, which were constructed by extending the bottom plate of gravity quay walls into the backfill soil. The L-type quay walls are expected to give economical benefits by reducing the cross-sectional area of the wall while maintaining its aseismatic efficiency as much as the classical caisson gravity quay wall. To confirm the effectiveness of the L-type structure, the geometry of L-type quay walls were varied for shaking table tests. And, to verify the influence of backfill soils on the seismic behavior of quay walls, additional shaking table tests were performed on the L-type quay wall after the backfill soils were replaced by gravels and light materials. As a result, it was found that L-type caisson quay walls are good earthquake resistant structures but increasing the length of bottom plate did not proportionally increase the effectiveness of the structure in its aseismatic performance. Replacing the backfill soils by the gravels and light materials, contrary to our expectation, was not an effective measure in improving the seismic performance of L-type caisson quay wall.

  • PDF

Behaviors of UHPC-filled Q960 high strength steel tubes under low-temperature compression

  • Yan, Jia-Bao;Hu, Shunnian;Luo, Yan-Li;Lin, Xuchuan;Luo, Yun-Biao;Zhang, Lingxin
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.201-219
    • /
    • 2022
  • This paper firstly proposed high performance composite columns for cold-region infrastructures using ultra-high performance concrete (UHPC) and ultra-high strength steel (UHSS) Q960E. Then, 24 square UHPC-filled UHSS tubes (UHSTCs) at low temperatures of -80, -60, -30, and 30℃ were performed under axial loads. The key influencing parameters on axial compression performance of UHSS were studied, i.e., temperature level and UHSS-tube wall thickness (t). In addition, mechanical properties of Q960E at low temperatures were also studied. Test results revealed low temperatures improved the yield/ultimate strength of Q960E. Axial compression tests on UHSTCs revealed that the dropping environmental temperature increased the compression strength and stiffness, but compromised the ductility of UHSTCs; increasing t significantly increased the strength, stiffness, and ductility of UHSTCs. This study developed numerical and theoretical models to reproduce axial compression performances of UHSTCs at low temperatures. Validations against 24 tests proved that both two methods provided reasonable simulations on axial compression performance of UHSTCs. Finally, simplified theoretical models (STMs) and modified prediction equations in AISC 360, ACI 318, and Eurocode 4 were developed to estimate the axial load capacity of UHSTCs at low temperatures.

Fragility Curve of Steel Box Bridge Using RFPB Bearing (RFPB 받침을 사용한 Steel Box 교량의 손상도 곡선)

  • Lee, Jongheon;Seo, Sangmok;Kim, Woonhak
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2011
  • As a great earthquake hit east Japan recently, the interests for the necessity of earthquake resistant design and earthquake resistance ability of existent structures are much increased. The damage or collapse of a bridge, as a social overhead capital structure affects socially and economically. Thus the evaluation of earthquake resistance ability of these structures is very important. The reviewing methods for earthquake resistance ability are mostly deterministic. Although the deterministic methods are fit for the evaluation of safety of each member, they are not practical for the whole structure. For the evaluation of structural safety for earthquake, the method for the evaluation of fragility or damage is needed for some stages of damage. In this paper, fragility curves of steel box bridge using RFPB bearing for PGA, PGV, SA, SV, SI are constructed, and these are compared with the cases of FPB.

Developments of Fire-Resistant Wooden Structural Components and Those Applications to Mid- to High-Rise Buildings in Japan

  • Hanai, Atsunari;Nakai, Masayoshi;Matsuzaki, Hiroyuki;Ohashi, Hirokazu
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.221-233
    • /
    • 2020
  • Based on past experiences of natural disasters and fires in Japan, it is stipulated by law that fire-resistant buildings larger than a certain size should be unique in the world. Recent interest in global environmental issues has led to the active introduction of wooden buildings also in Japan, and it is expected that wooden buildings will become larger and higher in size. This paper introduces the background of the development of fire-resistant laminated timber with a "Self-Charring-Stop layer", the contents of this development including other related developments, and the application of these technologies. In addition, towards the realization of much larger and higher buildings in the future, the current problems and issues to be solved are set and the necessity of the future technological development is described. Finally, a conceptual model of wooden high-rise building is proposed, which will be able to be constructed in 2025 by the further technological development.

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

Understanding of Blast Resistant Design and Performance Evaluation of a Building designed for Conventional Loads (방폭설계의 이해 및 일반하중에 대해 설계된 건축물의 방폭성능 평가)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • Considering the increased threats from worldwide terrors and the increased demands on the blast resistant design of commercial buildings, this study is aimed at understanding the basic concept of blast resistant design and evaluating the blast performance with an actual design example. Although there are many differences between earthquake and blast loads, the design concept against both loads is similar in terms of allowing the plastic behavior of a structure and sharing the ductile detailing. Through the blast performance evaluation of a target building provided in this study, it is noted that a well-designed building for the conventional loads can have a certain level of blast resistance. However, this cannot be generalized since the blast load on a structure varies depending on the type of weapon, TNT equivalence, standoff distance, etc. Architectural planning with positioning the sacrificial structure or maintaining a sufficient standoff distance from the expected detonation is the simple and effective way of improving the blast resistance of a building.