• 제목/요약/키워드: the dynamic model

검색결과 11,208건 처리시간 0.039초

Life Prediction of Hydraulic Concrete Based on Grey Residual Markov Model

  • Gong, Li;Gong, Xuelei;Liang, Ying;Zhang, Bingzong;Yang, Yiqun
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.457-469
    • /
    • 2022
  • Hydraulic concrete buildings in the northwest of China are often subject to the combined effects of low-temperature frost damage, during drying and wetting cycles, and salt erosion, so the study of concrete deterioration prediction is of major importance. The prediction model of the relative dynamic elastic modulus (RDEM) of four different kinds of modified concrete under the special environment in the northwest of China was established using Grey residual Markov theory. Based on the available test data, modified values of the dynamic elastic modulus were obtained based on the Grey GM(1,1) model and the residual GM(1,1) model, combined with the Markov sign correction, and the dynamic elastic modulus of concrete was predicted. The computational analysis showed that the maximum relative error of the corrected dynamic elastic modulus was significantly reduced, from 1.599% to 0.270% for the BS2 group. The analysis error showed that the model was more adjusted to the concrete mixed with fly ash and mineral powder, and its calculation error was significantly lower than that of the rest of the groups. The analysis of the data for each group proved that the model could predict the loss of dynamic elastic modulus of the deterioration of the concrete effectively, as well as the number of cycles when the concrete reached the damaged state.

The Macroeconomic Production Model in Business Environment - Analying with a Static and Dynamic Equations

  • Donghae LEE
    • Asian Journal of Business Environment
    • /
    • 제14권1호
    • /
    • pp.23-30
    • /
    • 2024
  • Purpose: The purpose of this research is to explore the macroeconomic model through both static and dynamic equations. The primary objective of this study is to investigate the variations in the elasticity of substitution across changing economic variables within the framework of the Allen-Uzawa production functions. Research, design, data and methodology: The data were drawn from the World Bank's annual central statistical office database from 2010 to 2021 in the United States of America. The level of expenditures and of the public finance sector, macroeconomic data like output, inflation rates, and labor are examined. Results: This study demonstrates the interaction of two equations, clarifying that the macroeconomic model is practical to determining the stability of both static and dynamic equation systems analytically. The Allen-Uzawa equations allow for the verification of macroeconomic model properties, and study results demonstrate an increase in the range of capital uses as a form of mechanization. A constant elasticity of substitution function is derived from the macroeconomic variables. Conclusion: The macroeconomic model, though the analysis of the static and dynamic Allen - Uzawa model, not only facilitates the examination of long-term trends in crucial endogenous variables but also overcomes challenges commonly associated with other mathematical methods. Overall, the analysis promotes economic growth, investment, and employment. The levels of expenditures and the public finance sector, along with macroeconomic data such as output, inflation rates, and labor, are examined.

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Chang, Seongmin
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1109-1114
    • /
    • 2022
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

열간 마무리압연 설정의 정도향상을 위한 동적 설정법 (A Dynamic Set-up Technique for High Accuracy set-up of Continuous Hot Strip Finishing Mill)

  • 문영훈;이준정
    • 소성∙가공
    • /
    • 제5권3호
    • /
    • pp.232-238
    • /
    • 1996
  • A dynamic mill set-up technique was developed to achieva a more precise roll gap set-up of the finishing mill stands for steel strip rolling. In the conventional mill set-up model the set-up values such as roll gap and roll speed are determined before the sheet bar reached the entry side of the finishing mill train and maintained constant until the strip top end passes through the last stand. In the way however a dynamic set-up logic that gives a way to adjust the roll gap value of the final mill stand for the strip ingoing from the ahead of the front stand was developed and attached to the existing set-up model. The roll gap modification is based on the analysis of the observation in the third stand of the finishing mill train. The dynamic set-up model was proved very effective for the more precise mill set-up and for operational stability in the hot strip finishing mill train.

  • PDF

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

강주탑의 비선형거동 특성을 고려한 케이블교량의 지진해석 (Evaluation of Seimic Capacity of Cable-Stayed Bridges Considering Inelastic Behavior of Steel Pylons)

  • 배성한;이경찬;장승필;김익현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.277-283
    • /
    • 2005
  • Inelastic model of Second Jindo Bridge is investigated to perform nonlinear dynamic analyses with various earthquake ground motions. The modal analysis is performed to obtain dynamic characteristics of the bridge and verify the model. It proves that the model has an appropriate dynamic characteristic and its natural frequency is relatively low. Four ground motions are chosen for time history dynamic analyses; El Centro, Kobe, Taft, and Mexico earthquake. Each ground motion multiplied by specified factors to investigate damages of the structure. The analyses prove that responses of the bridge depend on the duration time and the frequency characteristics of ground motion, not only peak acceleration. Static push-over analysis of steel pylon shows that the dynamic analysis over-estimates the seismic behavior of steel pylon definitely. Nonlinear spring hinge model is suggest to improve the shortage of the inelastic model could not deliberate local buckling damage. According to the time history analysis of nonlinear spring hinge model, it is proved that the inelastic beam element analysis overestimate the seismic capacity of steel pylon unquestionably with a large amount of errors.

  • PDF

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석 (Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model)

  • 이준배;유승재;정민수;이인;김덕관;오세종;이관중
    • 한국항공우주학회지
    • /
    • 제39권4호
    • /
    • pp.297-305
    • /
    • 2011
  • 본 논문에서는 비정상 공기력을 모델링하기위해 Peters-He의 동적유입류모델을 고려한 2차원 준정상 공기력 이론을 적용하여 회전익기 전진비행에 대한 공탄성 해석을 수행하였다. 또한, 공력탄성학적 안정성 해석을 수행하기 위하여, 전진비행 시 주기적인 특성을 갖는 비선형 정적 트림 해를 얻기 위해 동체 평형을 고려한 연계 트림 해석을 통한 완전 유한요소 방정식을 이용하였다. 동적유입류모델의 공력과 구조 특성을 검증하기 위해 유도 유입류와 깃끝에서의 구조변형을 타 수치해석결과와 비교하였다. 또한, 공탄성 안정성을 검증하기 위해 두 모델의 래그 감쇠값을 비교하였다.

유효응력모델을 이용한 침매터널의 동적거동 해석 (Dynamic Analysis of an Immersed Tunnel using an Effective Stress Model)

  • 박성식;문홍득
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.51-58
    • /
    • 2008
  • The George Massey immersed tunnel passes the Fraser River near Vancouver, Western Canada. In this paper, dynamic analysis of the tunnel on sandy soils was performed using an effective stress constitutive model called UBCSAND. This model is able to calculate pore pressure rise and resulting tunnel deformation due to cyclic loading. Centrifuge tests conducted at RPI are used to verify the model performance. Centrifuge tests consist of 3 models: Model 1 is designed for an original ground condition, Model 2 for a ground improvement by compaction method, Model 3 for a ground improvement by gravel drainage. The results of centrifuge Model 1 are presented and compared with predictions of UBCSAND model. This model well captured the results of centrifuge test and therefore can be used to predict dynamic behavior of similar tunnels or underground structures on sandy soils.

  • PDF

액츄에이터 시스템의 수학적 모델을 이용한 HDD 공기 베어링 슬라이더의 동특성 해석 (Dynamic Analysis of HDD Air Bearing Sliders using the Mathematical Model of Actuator System)

  • 권순억;박노열;김준오;정태건
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.485-491
    • /
    • 2000
  • We obtain the mathematical model of the hard disk drive actuator system from the system response data of the finite element analysis or experimental results. System response data including the dynamics of the considered system are expressed as the mathematical model. It allows the dynamic analysis of the actuator system without resort to the repetitive finite element modeling work. Even though the dynamic characteristics of the system are affected somewhat by the structural modification and the change of the dynamic properties, we can use the modified size and material properties of the actuator system in the mathematical model to some extent. In this study, we express the mathematical model of the simplified rectangular plate first and then proceed to the actual hard disk drive actuator system.

  • PDF