• Title/Summary/Keyword: the distribution of water flow

Search Result 1,191, Processing Time 0.034 seconds

Relationship between Bacterial Regrowth and Free chlorine Residuals in Water Distribution System

  • Lee, Yoon-Jin;Yoon, Tae-Ho;Jun, Byong-Ho;Oh, Kyoung-Doo;Nam, Sang-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.136-139
    • /
    • 2003
  • This study is to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution system which belongs to both K and Y water treatment plant of S city of Korea. The data analyzing in distribution systems (DS) shows that the free chlorine residuals decrease from 0.10 to 0.56 mgmg/L for K, and 0.51 to 0.78 mg/L for Y. The decay of free chlorine is clearly higher in both March and August than those of in January. The HPC in DS are ranged from 0 to 40 CFU/mL for K, 0 to 270 CFU/mL for Y, on R2A medium. In particular, its level is relatively high at consumers ground storage tanks, taps and point-of-end area of Y. The predominant genera is studied in distribution systems are Acinetobacter, Sphingomonas (branch of Pseudomonas), Micrococcus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria increase in the end-point area. Most of them are either encapsulated cells or cocci of gram-positve. In conclusion, the point-of-end area in distribution systems shows the longer flow distance from water treatment plants, the greater diversity and higher level of heterotrophic bacteria due to the significant decay of free chlorine residuals.

  • PDF

A Similarity of the Velocity Profiles According to Water Depth in Partially Filled Circular Pipe Flows (비만관 상태의 원형관로에서 수위에 따른 속도분포의 상사성)

  • Yoon, Ji-In;Kim, Young-Bae;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.28-32
    • /
    • 2008
  • Contrary to the flow rate in fully filled pipe flows, the flow rate in partially filled pipe flows is significantly influenced by the variation of water level, channel slop, and so on. The major difference in these two flows results from the existence of a free surface. To make it clear, in the present study, a similarity of the velocity profile in a partially filled circular pipe has been investigated according to the water level. A particle image velocimetry (PIV) technique was applied to measure the three-dimensional velocity profiles. As a result, there is found a similarity of the velocity profile near the central region. However, near the side wall, the similarity is broken due to the interaction between the wall and the free surface.

Peak Discharge Change by Dirrerent Design Rainfall on Small Watershed

  • Jun, Byong-Ho;Jang, Suk-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.97-104
    • /
    • 1992
  • To design the minor structures in the small watersheds, it is required to calculate the peak discharge. For these calculations the simple peak flow prediction equations, the unit hydrograph method. the syntheic unit hydrograph methods or the runoff simulation models are adopted. To use these methods it is generally requried to know the amount and the distributions of the design rainfall; which are the uniform distribution, the trangular distribution, the trapezoidal distribution, or the Huff type distribution. In this study, the peak discharges are calculated by the different rainfall distributions and the results are compared.

  • PDF

Analysis on Heat Supply Piping Network for Apartment House (아파트의 온수공급배관망해석)

  • 박윤철;황광일
    • Journal of the Korean housing association
    • /
    • v.13 no.6
    • /
    • pp.89-99
    • /
    • 2002
  • The purpose of this research is to analyze the characteristics of flow rate distribution in hot-water piping networks in the apartment building. A 14-story apartment house was selected as a sample building and analyzed numerically by Hardy-Cross method. Two different piping networks, one has three vertical zones and the other of a single zone with automatic balancing valves, were compared. Some of research results are as follows; As the temperature of supply hot-water increases, the flow rate of it does by buoyancy effect, but this effect is not found in the piping network with automatic balancing valves. Non-uniformity in hot-water flow distributions to all stories in the piping system of single vertical zone can be completely reformed by the installation of either manually operated or automatic balancing valves in every story.

Management of Water Distribution Systems Using Optimization Model (관망관리를 위한 최적화 모형의 구성)

  • Lee, Beum-Hee
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.137-149
    • /
    • 2002
  • Time passages could deteriorate the flow ability and hold the flow in the water distribution facilities because of their erosion and breakdown. It is necessary that the study to determine the optimal change time and the improvement plan for the continuous management using optimization methods or decision support systems. But, the present study tendency only aware the changes of hydraulic characteristics without industrial management plans. This study shows the pipe replacement program in these two concepts and the elementary process to apply it to Daejeon city.

  • PDF

GROUNDWATER RECHARGE ESTIMATION USING ARCGIS-CHLORIDE MASS BALANCE APPROACH

  • Lee Ju Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Groundwater recharge is defined in an addition of water to groundwater reservoir. Recently, many people have been moving to the Edwards aquifer and urban and agricultural industry have been expending. Hydrologists and water planning managers concern about insufficient groundwater amounts and irrigation water price variability. In this paper, I focus on estimates of local recharge volumes and quantify preferential flow through GIS technique. Chloride Mass Balance (CMB) and hydrochemical components have been widely applied to recharge rate and evaluate flow paths. The CMB method is based on relationship between wet-dry chloride deposition data and Rainfall data. These data are manipulated using ArcGIS. Especially, hydrochemical concentration distribution is good index for groundwater residence times or flow paths such as $[Mg^{2+}]/[Ca^{2+}],[Cl]$ and log$([Ca^{2+}]+[Mg^{2+}])/[Na^+]$. Well information such as hydrological-hydrochemical data are imported into ArcGIS and manipulated by interpolation techniques. For each potentiometric surface and water quality, point data are converted to spatial data through each Kriging and Inverse Distance Weighted (IDW) techniques.

  • PDF

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Fiber optic distribution temperature sensing in a borehole heat exchanger system (광섬유 센서를 이용한 지중 열교환기 시스템 온도 모니터링)

  • Shim, Byoung-Ohan;Lee, Young-Min;Kim, Hyoung-Chan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.451-454
    • /
    • 2006
  • Fiber optic distributed temperature sensing and thermal line sensor are applied in an observation borehole and a loom deep borehole heat exchanger. For the case of permanently installed system fiber optic DTS is very useful. By comparing with TLS, fiber optic DTS shows good accuracy and reliability. Ground water flow can give influences at heat exchange rate of the heat pump system. According to the hydraulic characteristics and temperature-depth profile, we consider that temperature-depth profile do not seem to be dependent on ground water flow. A permanent installation of fiber optic cable is expected as a reliable temperature measurement technique in a borehole heat exchanger system.

  • PDF

A Study for Improvement of Temperature Distribution in Plunger Surface Cooling (브라운관용 플런저 냉각표면의 온도분포 개선을 위한 연구)

  • Kwak, Kyung-Min;Park, Ji-Yeol;Bai, Cheol-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.126-133
    • /
    • 2008
  • The main objective of the present study is to achieve linear temperature distribution of cooling surface of plunger. K type thermocouples are attached at the surface of plunger to measure temperature. Nozzle and insulating material are inserted in the pin hole of the plunger for this study. Cooling water flow enters at one nozzle and leaves at three nozzles. Flow through nozzle can be activated in the pin hole, temperature of hot point around hole is decreased. Meanwhile, insulating material blocks off heat transfer, temperature of cold point around hole is increased. By combination of nozzle and insulation, heat transfer of hole is controlled effectively, as result its, temperature of plunger surface shows linear temperature distribution.