본 논문에서는 포화 공격(saturation attack)을 SKIPJACK에 적응해 본다. 우리가 제시하는 포화 공격의 핵심은 SKIPJACK에 대한 16라운드 distinguisher의 구성 방법에 있으며 이것은 18라운드(5~22)와 23라운드(5~27) SKIPJACK에 대한 공격을 가능하게 한다. 또한 16라운드 distinguisher를 기반으로 하여 20라운드 distinguisher를 구성할 수 있는데 이것은 22라운드(1~22)와 27라운드(1~27) SKIPJACK에 대한 공격을 가능하게 한다. 27라운드 SKIPJACK에 대한 공격에 필요한 선택 평문은 $2^{50}$개이며 이 때의 공격 복잡도는 3\cdot 2^{75}$이다.
With the rise of the Internet of Things, the security of such lightweight computing environments has become a hot topic. Lightweight block ciphers that can provide efficient performance and security by having a relatively simpler structure and smaller key and block sizes are drawing attention. Due to these characteristics, they can become a target for new attack techniques. One of the new cryptanalytic attacks that have been attracting interest is Neural cryptanalysis, which is a cryptanalytic technique based on neural networks. It showed interesting results with better results than the conventional cryptanalysis method without a great amount of time and cryptographic knowledge. The first work that showed good results was carried out by Aron Gohr in CRYPTO'19, the attack was conducted on the lightweight block cipher SPECK-/32/64 and showed better results than conventional differential cryptanalysis. In this paper, we first apply the Differential Neural Distinguisher proposed by Aron Gohr to the block ciphers HIGHT and GOST to test the applicability of the attack to ciphers with different structures. The performance of the Differential Neural Distinguisher is then analyzed by replacing the neural network attack model with five different models (Multi-Layer Perceptron, AlexNet, ResNext, SE-ResNet, SE-ResNext). We then propose a Related-key Neural Distinguisher and apply it to the SPECK-/32/64, HIGHT, and GOST block ciphers. The proposed Related-key Neural Distinguisher was constructed using the relationship between keys, and this made it possible to distinguish more rounds than the differential distinguisher.
차분 분석은 블록 암호에 대한 분석 기법 중 하나이며, 입력 차분에 대한 출력 차분이 높은 확률로 존재한다는 성질을 이용한다. 무작위 데이터와 특정 출력 차분을 갖는 데이터를 구별할 수 있다면, 차분분석에 대한 데이터 복잡도를 감소시킬 수 있다. 이를 위해 딥러닝 기반의 신경망 구별자에 대한 연구들이 다수 진행되었으며, 본 논문에서는 PIPO 64/128에 대한 최초의 딥러닝 기반의 신경망 구별자를 제안하였다. 여러 입력 차분들을 사용하여 실험한 결과, 0, 1, 3, 5-라운드의 차분 특성에 대한 3 라운드 신경망 구별자가 각각 0.71, 0.64, 0.62, 0.64의정확도를달성하였다. 이 구별자는 고전 구별자와 함께 사용될 경우 최대 8 라운드에 대한 구별 공격이 가능하도록 한다. 따라서 여러 라운드의 입력 차분을 처리할 수 있는 구별자를 찾아냄으로써 확장성을 확보하였다. 향후에는 성능 향상을 위한 최적의 신경망을 구성하기 위해 다양한 신경망 구조를 적용하고, 연관 키 차분을 사용하거나 다중 입력차분을 위한 신경망 구별자를 구현할 예정이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3815-3833
/
2021
MILP-based automatic search is the most common method in analyzing the security of cryptographic algorithms. However, this method brings many issues such as low efficiency due to the large size of the model, and the difficulty in finding the contradiction of the impossible differential distinguisher. To analyze the security of ESF algorithm, this paper introduces a simplified MILP-based search model of the differential distinguisher by reducing constrains of XOR and S-box operations, and variables by combining cyclic shift with its adjacent operations. Also, a new method to find contradictions of the impossible differential distinguisher is proposed by introducing temporary variables, which can avoid wrong and miss selection of contradictions. Based on a 9-round impossible differential distinguisher, 15-round attack of ESF can be achieved by extending forward and backward 3-round in single-key setting. Compared with existing results, the exact lower bound of differential active S-boxes in single-key setting for 10-round ESF are improved. Also, 2108 9-round impossible differential distinguishers in single-key setting and 14 12-round impossible differential distinguishers in related-key setting are obtained. Especially, the round of the discovered impossible differential distinguisher in related-key setting is the highest, and compared with the previous results, this attack achieves the highest round number in single-key setting.
SHACAL은 NESSIE 프로젝트에 발표된 블록 암호로서 국제 해쉬 표준인 SHA-1에 기반한다. SHACAL은 XOR 연산, 덧셈에 대한 modular 연산 및 비트별 계산 가능한 부울 함수를 사용한다. 이러한 연산들과 부울 함수의 사용은 차분 공격을 어렵게 만든다. 즉, 비교적 높은 확률을 가지는 긴 라운드의 차분 특성식을 찾기 힘들게 한다. 그러나 SHACAL은 높은 확률의 짧은 차분 특성식들을 가지고 있으며, 이를 이용하여 36-step 부메랑 distinguisher를 꾸밀 수 있다. 본 논문에서는 36-step 부메랑 distinguisher를 이용하여 다양한 키 길이를 가지는 SHACAL의 축소된 라운드에 대한 확장된 부메랑 공격을 소개한다. 공격 결과를 요약하면 256 비트 키를 사용하는 39-step SHACAL과 512 비트 키를 사용하는 47-step SHACAL은 확장된 부메랑 공격이 가능하다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.478-493
/
2024
In this paper, the Mixed Integer Linear Programming (MILP) model is improved for searching differential characteristics of block cipher Midori-64, and 4 search strategies of differential path are given. By using strategy IV, set 1 S-box on the top of the distinguisher to be active, and set 3 S-boxes at the bottom to be active and the difference to be the same, then we obtain a 5-round differential characteristics. Based on the distinguisher, we attack 12-round Midori-64 with data and time complexities of 263 and 2103.83, respectively. To our best knowledge, these results are superior to current ones.
The notion of pseudorandomness is the theoretical foundation on which to consider the soundness of a basic structure used in some block ciphers. We examine the pseudorandomness of the block cipher KASUMI, which will be used in the next-generation cellular phones. First, we prove that the four-round unbalanced MISTY-type transformation is pseudorandom in order to illustrate the pseudorandomness of the inside round function FI of KASUMI under an adaptive distinguisher model. Second, we show that the three-round KASUMI-like structure is not pseudorandom but the four-round KASUMI-like structure is pseudorandom under a non-adaptive distinguisher model.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5717-5730
/
2019
LBlock-s is the core block cipher of authentication encryption algorithm LAC, which uses the same structure of LBlock and an improved key schedule algorithm with better diffusion property. Using the differential properties of the key schedule algorithm and the cryptanalytic technique which combines impossible boomerang attacks with related-key attacks, a 15-round related-key impossible boomerang distinguisher is constructed for the first time. Based on the distinguisher, an attack on 22-round LBlock-s is proposed by adding 4 rounds on the top and 3 rounds at the bottom. The time complexity is about only 268.76 22-round encryptions and the data complexity is about 258 chosen plaintexts. Compared with published cryptanalysis results on LBlock-s, there has been a sharp decrease in time complexity and an ideal data complexity.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권9호
/
pp.4727-4741
/
2019
The lightweight block cipher Piccolo adopts Generalized Feistel Network structure with 64 bits of block size. Its key supports 80 bits or 128 bits, expressed by Piccolo-80 or Piccolo-128, respectively. In this paper, we exploit the security of reduced version of Piccolo from the first round with the pre-whitening layer, which shows the vulnerability of original Piccolo. As a matter of fact, we first study some linear relations among the round subkeys and the properties of linear layer. Based on them, we evaluate the security of Piccolo-80/128 against the meet-in-the-middle attack. Finally, we attack 13 rounds of Piccolo-80 by applying a 5-round distinguisher, which requires $2^{44}$ chosen plaintexts, $2^{67.39}$ encryptions and $2^{64.91}$ blocks, respectively. Moreover, we also attack 17 rounds of Piccolo-128 by using a 7-round distinguisher, which requires $2^{44}$ chosen plaintexts, $2^{126}$ encryptions and $2^{125.49}$ blocks, respectively. Compared with the previous cryptanalytic results, our results are the currently best ones if considering Piccolo from the first round with the pre-whitening layer.
Aron Gohr는 경량 블록암호 Speck에 대해 딥러닝 기술에 기반한 암호분석 기법을 제안하였다. 이는 기존의 차분분석 방식보다 높은 정확도로 선택적 평문 공격을 가능하게 한 방법이다. 본 논문에서는 이러한 딥러닝 기반 암호분석의 동작 원리에 대해 확률분포를 이용하여 분석하고 이를 경량 블록암호 Simon에 적용한 결과를 제시한다. 또한, 암호분석 알고리즘 내부에서 신경망의 예측값 확률분포가 Speck과 Simon의 각 라운드 함수 특성에 따라 차이가 있음을 규명한다. 이를 통해 Aron Gohr가 제시한 암호분석의 핵심기술인 신경망 구분자의 성능 개선 방향을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.