• Title/Summary/Keyword: the damaged part

Search Result 450, Processing Time 0.022 seconds

Analysis of the Cooling Fin for the Temperature Reduction of the Tire Sidewall (타이어 사이드월 온도 저감을 위한 Cooling Fin 해석)

  • Park, JaeHyen;Jung, SungPil;Chang, WonSun;Chun, ChulKyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.862-867
    • /
    • 2014
  • When the vehicle is traveling, the deformation caused by friction continued with the ground is made to occur because the tire is the composite material of a viscoelastic. Part of the deformation energy is converted into heat energy as Hysteresis and temperature inside the tire rises. The generated heat is shed to the outside through the convection and evangelism. Increase in the internal temperature of the tire is difficult to ensure the safety of vehicle by damage to the tire during driving. Recently, Even when the tire is damaged, it is designed to be possible to driving in case of run-flat tires but the fact is that the development of the technology for the synergistic effect of heat release inside the tire by the side reinforcement is necessary. In this study, by using the Finite Element Method (FEM), applying the cooling fins to the tire sidewall, it is intended to check the temperature distribution along the shape of the cooling fins and the temperature reduction effect.

  • PDF

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

Damage detection of reinforced concrete columns retrofitted with FRP jackets by using PZT sensors

  • Tzoura, Efi A.;Triantafillou, Thanasis C.;Providakis, Costas;Tsantilis, Aristomenis;Papanicolaou, Corina G.;Karabalis, Dimitris L.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.165-180
    • /
    • 2015
  • In this paper lead zirconate titanate transducers (PZT) are employed for damage detection of four reinforced concrete (RC) column specimens retrofitted with carbon fiber reinforced polymer (CFRP) jackets. A major disadvantage of FRP jacketing in RC members is the inability to inspect visually if the concrete substrate is damaged and in such case to estimate the extent of damage. The parameter measured during uniaxial compression tests at random times for known strain values is the real part of the complex number of the Electromechanical Admittance (Conductance) of the sensors, obtained by a PXI platform. The transducers are placed in specific positions along the height of the columns for detecting the damage in different positions and carrying out conclusions for the variation of the Conductance in relation to the position the failure occurred. The quantification of the damage at the concrete substrate is achieved with the use of the root-mean-square-deviation (RMSD) index, which is evaluated for the corresponding strain values. The experimental results provide evidence that PZT transducers are sensitive to damage detection from an early stage of the experiment and that the use of PZT sensors for monitoring and detecting the damage of FRP-retrofitted reinforced concrete members, by using the Electromechanical Admittance (EMA) approach, can be a highly promising method.

A Study of the Optimal Deployment of Tsunami Observation Instruments in Korea (지진해일 조기탐지를 위한 한국의 지진해일 관측장비 최적 위치 제안 연구)

  • Lee, Eunju;Jung, Taehwa;Kim, Ji-Chang;Shin, Sungwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.607-614
    • /
    • 2019
  • It has been an issue among researchers that the tsunamis that occurred on the west coast of Japan in 1983 and 1993 damaged the coastal cities on the east coast of Korea. In order to predict and reduce the damage to the Korean Peninsula effectively, it is necessary to install offshore tsunami observation instruments as part of the system for the early detection of tsunamis. The purpose of this study is to recommend the optimal deployment of tsunami observation instruments in terms of the higher probability of tsunami detection with the minimum equipment and the maximum evacuation and warning time according to the current situation in Korea. In order to propose the optimal location of the tsunami observation equipment, this study will analyze the tsunami propagation phenomena on the east sea by considering the potential tsunami scenario on the west coast of Japan through numerical modeling using the COrnell Multi-grid COupled Tsunami (COMCOT) model. Based on the results of the numerical model, this study suggested the optimal deployment of Korea's offshore tsunami observation instruments on the northeast side of Ulleung Island.

Post earthquake performance monitoring of a typical highway overpass bridge

  • Iranmanesh, A.;Bassam, A.;Ansari, F.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • Bridges form crucial links in the transportation network especially in high seismic risk regions. This research aims to provide a quantitative methodology for post-earthquake performance evaluation of the bridges. The experimental portion of the research involved shake table tests of a 4-span bridge which was subjected to progressively increasing amplitudes of seismic motions recorded from the Northridge earthquake. As part of this project, a high resolution long gauge fiber optic displacement sensor was developed for post-seismic evaluation of damage in the columns of the bridge. The nonlinear finite element model was developed using Opensees program to simulate the response of the bridge and the abutments to the seismic loads. The model was modified to predict the bent displacements of the bridge commensurate with the measured bent displacements obtained from experimental analysis results. Following seismic events, the tangential stiffness matrix of the whole structure is reduced due to reduction in structural strength. The nonlinear static push over analysis using current damaged stiffness matrix provides the longitudinal and transverse ultimate capacities of the bridge. Capacity loss in the transverse and longitudinal directions following the seismic events was correlated to the maximum displacements of the deck recorded during the events.

Numerical study to reproduce a real cable tray fire event in a nuclear power plant

  • Jaiho Lee ;Byeongjun Kim;Yong Hun Jung;Sangkyu Lee;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1571-1584
    • /
    • 2023
  • In this study, a numerical analysis was performed as part of an international joint research project to reproduce a real cable tray fire that occurred in the heater bay area of the turbine building of a nuclear power plant. A sensitivity analysis was performed on various input parameters to derive results consistent with the sprinkler activation time obtained from the fire event analysis. For all sensitive parameters, the normalized sprinkler activation time correlated well with the power function of the normalized sprinkler height. A correlation equation was developed to identify the sprinkler activation time at any location when determining the slope or fire growth rate under the conditions assuming a linear or t-squared heat release rate (HRR) time curve. Various cable fire growth assumptions were used to determine which assumption was better to provide the prediction coincident with the information given from the fire event analysis in terms of the sprinkler activation time and total energy generated from cables damaged by fire. In the comprehensive analysis of all the sensitive parameters, the standard deviation of the input parameters increased as the sprinkler height decreased. Within the range of the sensitivity parameter values given in this study, when considering all sprinkler heights, the standard deviation of the cable model change was the largest and that of the overhang position change was the smallest.

Study on Manufacturing Actual Mal-gun from Joseon Dynasty -Based on the Excavated Mal-gun from Seok-nam-dong, In-chceon- (조선시대[朝鮮時代] 말군의 실물 제작법에 관한 연구)

  • Jeong, Mi-Sook;Song, Mi-Kyung
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.7
    • /
    • pp.153-161
    • /
    • 2007
  • In 2004, Mal-gun(抹裙) was excavated from a plastered tomb in Seok-nam-dong, In-cheon. This tomb is assumed to be from an upper-class woman. The excavated Mal-gun was used to fill in the empty spaces in coffin, and it was seriously damaged and foxed dark. The Mal-gun is made with thin, loose Sook-cho(숙초), and the width of the fabric is 70cm. Both sides of the crotches are overlapped in front, and the back is opened. The waist straps are detached, leaving a little part to show the width of the straps. The hems of the Mal-gun are sewed straight, without any pleats, except some spaces for the feet to go through. This study compared the Mal-gun of Joseon Dynasty from the documentary records and picture records with the excavated Mal-gun from Seok-nam-dong, In-chceon. Also, actual Mal-gun was manufactured according to the excavated Mal-gun to study the process of manufacturing and the formation. As a result, the excavated Mal-gun has the same form of that shown in Ak-hak-gwae-bum, a documentary record from the early period of Joseon Dynasty.

Evaluation of Friction and Wear Characteristics of Carbon-based Solid Lubricant Films for Surface Application of Compressor Parts (압축기 부품소재 표면 적용을 위한 탄소 기반 고체 윤활막의 마찰 및 마모 특성 평가)

  • Lee, Sung-Jun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.222-226
    • /
    • 2022
  • Between diaphragms made of stainless steel (SUS), which is the main component of a hydrogen gas compressor, micro-slip occurs owing to repeated bending, resulting in scratches on the surface. The surface scratch of the compressor part is a problem with airtightness, which reduces the efficiency of the compressor; in severe cases, damage is a possibility. In this study, the changes in friction and wear characteristics due to the surface polishing of SUS and carbon-based solid lubricant films (graphene and CNT) were analyzed. Bare SUS, polished SUS, graphene film, and CNT film specimens were prepared. The surface roughness of the SUS was significantly reduced by surface polishing but increased by carbon-based solid lubricating films. In contrast, the friction coefficient maintained a similar value after surface polishing but was significantly reduced by the carbon-based solid lubricant films. In particular, the graphene film exhibited the lowest initial friction coefficient, while the CNT film exhibited the lowest overall average friction coefficient. Regarding the wear rate, polished SUS exhibited the lowest value, but the surface condition of the wear track showed that the carbon-based solid lubricating films were relatively less damaged. Although the wear rate measured was largely attributed to the solid lubricating film peeling off, the SUS surface under the film was considered protected.

The Anthelmintic Principle of "O-Mae", the Roasted Fruits of Prunus mume, Against Clonorchis sinensis (오매의 간디스토마 살충성 물질에 관한 연구)

  • 곽영실;류성호;백병걸;이재구;안병준
    • YAKHAK HOEJI
    • /
    • v.29 no.1
    • /
    • pp.32-38
    • /
    • 1985
  • The anthelmintic substance of the roasted fruits of Prunas mume against Clonorchis sinensis was isolated and its structure was identified by chemical and physical methods. The results obtained from the experiments are as follows: 1) The methanol extract of the roasted fruits of P. mume was fractionated into four parts: petroleum ether, ethyl ether, ethyl acetate and water soluble part. Among these, etherial fraction was found to have strong wormicidal effect on liberated metacercaria of Clonorchis sinensis. 2) From the etherial fraction, the wormicidal substance was isolated by silica gel, polyamide and sephadex column chromatography and identified to be 5-hydroxymethylfurfural (5-HMF) by chemical and spectral data. 3) 5-HMF was synthesized and administered to the rabbits infected with C. sinensis. On the 2nd day after administration, the EPG (eggs per gram in feces) reached to the maximal value. Among the adult worms isolated from the bile duct of the treated animal, 84% of worms were damaged morphologically. 4) The content of 5-HMF in the fruits of P. mume which were roasted in an oven at $90-110^{\circ}C$ for 52 hours and that in the fresh fruits was evaluated by HPLC. The content of 5-HMF was 0.8% in the roasted fruits and 0.02% in the fresh ones.

  • PDF