• 제목/요약/키워드: the control-value theory

검색결과 260건 처리시간 0.028초

The mathematical backups in the option pricing theory

  • 김주홍
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.10-10
    • /
    • 2003
  • Option pricing theory developed by Black and Sholes depends on an arbitrage opportunity argument. An investor can exactly replicate the returns to any option on that stock by continuously adjusting a portfolio consisting of a stock and a riskless bond. The value of the option equal the value of the replicating portfolio. However, transactions costs invalidate the Black-Sholes arbitrage argument for option pricing, since continuous revision implies infinite trading, Discrete revision using Black-Sholes deltas generates errors which are correlated with the market, and do not approach zero with more frequent revision when transactions costs are included. Stochastic calculus serves as a fundamental tool in the mathematical finance. We closely look at the utility maximization theory which is one of the main option valuation methods. We also see that how the stochastic optimal control problems and their solution methods are applied to the theory.

  • PDF

The Characterization of Optimal Control Using Delay Differential Operator

  • Shim, Jaedong
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.123-139
    • /
    • 1994
  • In this paper we are concerned with optimal control problems whose costs are quadratic and whose states are governed by linear delay differential equations and general boundary conditions. The basic new idea of this paper is to introduce a new class of linear operators in such a way that the state equation subject to a starting function can be viewed as an inhomogeneous boundary value problem in the new linear operator equation. In this way we avoid the usual semigroup theory treatment to the problem and use only linear operator theory.

  • PDF

Controller Design for Fuzzy Systems via Piecewise Quadratic Value Functions

  • Park, Jooyoung;Kim, JongHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.300-305
    • /
    • 2004
  • This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in practice. A design example is given to illustrate the applicability of the proposed method.

딥러닝을 이용한 온라인 리뷰 기반 다속성별 추천 모형 개발 (Developing the online reviews based recommender models for multi-attributes using deep learning)

  • 이륜경;정남호;홍태호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제28권1호
    • /
    • pp.97-114
    • /
    • 2019
  • Purpose The purpose of this study is to deduct the factors for explaining the economic behavior of an Internet user who provides personal information notwithstanding the concern about an invasion of privacy based on the Information Privacy Calculus Theory and Communication Privacy Management Theory. Design/methodology/approach This study made a design of the research model by integrating the factors deducted from the computation theory of information privacy with the factors deducted from the management theory of communication privacy on the basis of the Dual-Process Theory. Findings According to the empirical analysis result, this study confirmed that the Privacy Concern about forms through the Perceived Privacy Risk derived from the Disposition to value Privacy. In addition, this study confirmed that the behavior of an Internet user involved in personal information offering occurs due to the Perceived Benefits contradicting the Privacy Concern.

Robust Control of a Glass-Fiber Reinforced Composite Beam using $\mu$-Synthesis Algorithm

  • Yun, Yeo-Hung;Lee, Young-Choon;Kwon, Tae-Kyu;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.498-498
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

유전알고리즘을 이용한 $\mu$제어기 설계 ($\mu$-Controller Design using Genetic Algorithm)

  • 기용상;안병하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.301-305
    • /
    • 1996
  • $\mu$ theory can handle the parametric uncertainty and produces more non-conservative controller than H$_{\infty}$ control theory. However an existing solution of the theory, D-K iteration, creates a controller of huge order and cannot handle the real or mixed real-complex perturbation sets. In this paper, we use genetic algorithms to solve these problems of the D-K iteration method. The Youla parameterization is used to obtain all stabilizing controllers and the genetic algorithms determines the values of the state feedback gain, the observer gain, and Q parameter to minimize $\mu$, the structured singular value, of given system. From an example, we show that this method produces lower order controller which controls a real parameter-perturbed plant than D-K iteration method.

  • PDF

로보틱 메니플레이터의 최적 경로 제어 (Optimal trajectory control of robotic manipulators)

  • 박현우;배준경;박종국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.421-424
    • /
    • 1987
  • Recently, the problem associated with the achievement of desired trajectories for non-linear robotic manipulatory systems are researched. The control system which is designed for this robot manipulator, poses a number of severe problem. The methods proposed to deal with the problem fall loosely into three main classes : "direct" "adaptive", "anthropomorphic". Besides there is an approach which is described based upon the application of optimal control theory. In this paper, using the optimal theory, we choose error-coordinate, between the desired trajectories and the practical as the state values, and determine the control law U which minimize a corresponding performance criterion. Let's consider the robotic arm proposed by Freund and set up the deviations of it's trajectory as a measure of performance. To find the optimal control law $U^*$ and the next state value which need to obtain $U^*$ here, we should introduced the conjugate gradient algorithm and the Runge Kutta method.

  • PDF

2차 자속관측기를 이용한 자계 Orientation 형 유도전동기 센스리스 벡터제어 (Induction Machine Sensorless Vector Control typed by the Field Orientation Using 2 order Flux Observer)

  • 홍순일;손의식;이동철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2067-2069
    • /
    • 2002
  • The study of the vector control of the induction machine without speed sensor is going on and there are the adaptive performance method to use the flux observer. This study is to make the vector control without the speed sensor based on the flux oriented reference vector control theory. This paper proposes the new speed follow-up method to deduce the current value in the current sensor and the 2 order flux observer based on the observer theory and examine the possibility to realize the flux oriented vector control system using the simulation in this proposed method of this study.

  • PDF

유리섬유를 함유한 열가소성 복합재 보의 진동제어 (Vibration Control of a Glass-Fiber Reinforced Termoplastic Composite Beam)

  • 권대규;윤여흥;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.11-14
    • /
    • 2000
  • This paper presents the vibration control of a glass-fiber reinforced thermoplastic composite beam with a distributed PVDF sensor and piezo-ceramic achlator. The three types of different controllen which are PID, H$\infty$ , and p-synthesis ontrollcr are employed to achieve vibration suppression in the transient vibration of composite beam. In the H$\infty$ , controller design, 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to struchred uncertainty is adopled Lo suppress the vibration. If the controller designed by H$\infty$ , theory does not satisfy control performance, it is improved by $\mu$ -synthesis method with D-K iteration so that the$\mu$-contoller based on the structured singular value satisfies the nominal performance and robust performance Simulations and experiments were carried out with the designed controllers m order to demonstrate the suppression efficiency of each controller.

  • PDF

Vibration control of laminated composite plates using embedded smart layers

  • Reddy, J.N.;Krishnan, S.
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.135-156
    • /
    • 2001
  • Analytical solutions and finite element results of laminated composite plates with smart material layers embedded in them are presented in this study. The third-order plate theory of Reddy is used to study vibration suppression characteristics. The analytical solution for simply supported boundary conditions is based on the Navier solution procedure. The velocity feedback control is used. Parametric effects of the position of the smart material layers, material properties, and control parameters on the suppression time are investigated. It has been found that (a) the minimum vibration suppression time is achieved by placing the smart material layers farthest from the neutral axis, (b) using thinner smart material layers have better vibration attenuation characteristics, and, (c) the vibration suppression time is larger for a lower value of the feedback control coefficient.