• Title/Summary/Keyword: the coefficient of particle deposition

Search Result 21, Processing Time 0.023 seconds

Characteristics of Particle Deposition onto the Cleanroom Wall Panel with Electrostatic Voltages (정전압에 따른 클린룸 벽체에서의 입자침착 특성)

  • Noh, Kwang-Chul;Son, Young-Tae;Kim, Jong-Jun;Oh, Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1033-1038
    • /
    • 2006
  • We carried out the experiments on particle deposition onto the cleanroom wall panels. And then we investigated the particle deposition characteristic coefficients for electrostatic voltages and particle size. It was found that there is little difference in characteristics of the particle deposition between the steel panel and the anti-static coating panel. In case of that the particle size is under $1.0{\mu}m$, the particle deposition characteristic coefficient becomes larger as the electrostatic voltage induced to the cleanroom wall panel is increasing. Where in case of that the particle size is over $3.0{\mu}m$, the particle deposition characteristic coefficients do not show any differences with the electrostatic voltages. It is due to that the electrostatic force is the major particle transport mechanism for submicron particles, while the gravitational settling is the major particle transport mechanism for overmicron particles when the electro-static voltages are induced to the cleanroom wall panel.

Treatment of Heavy Metal Wastewater Bed Electrode Reactor by a Fluidized 1. Distribution of Local Mass Transfer Coefficients on the Current Feeder (유동층 전극반응기를 이용한 중금속폐수의 처리에 관한 연구 1. 전류공급원에서의 국부물질전달계수의 분포)

  • 황영기;정은혁
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • Varing the flow velocity of solution and particle diameter, the mass transfer coefficient of the local electrode on current feeder has been measured in an empty flow reactor, an inert fluidized bed electrode reactor, and an active fluidized bed electrode reactor. It had its maximium value when the bed porosity was 0.6 to 0.65 and decreased with in- creasing the height of local electrode. The mass transfer coefficient was found to be high especially when higher particle was fluidized. Electrochemical deposition of copper dissolved in the synthesized wastewater has been performed in the active fluidized bed electrode reactor. The deduction rate was higher than 90% and the residual concentration of copper decreased to less than 5ppm.

  • PDF

Measurement of Atmospheric Dry Deposition and Size Distribution of Particulate PCBs in 1999 at Seoul

  • Park, Seong-Suk;Shin, Hye-Joung;Yi, Seung-Muk;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.35-43
    • /
    • 2006
  • Ambient particle size distributions of PCBs and their dry deposition fluxes were measured at a site in Seoul to quantify dry deposition fluxes of PCBs and size characteristics of PCBs in the air, and to estimate ambient concentrations of gaseous PCBs and dry deposition fluxes. The dry deposition plate was used to measure dry deposition fluxes of particulate mass and PCBs and a cascade impactor and rotary impactor were used to measure ambient particle size distributions for small ($D_p<9{\mu}m$) and large ($D_p>9{\mu}m$) particles, respectively. Six sample sets were collected from April to July 1999. The fluxes of particulate total PCBs (the sum of 43 congeners) ranged from 160 to $607ng\;m^{-2}day^{-1}$. The size distribution of total PCBs was bimodal with two peaks in small particle size ($D_p{\sim}0.6\;and\;6{\mu}m$, respectively) and, thus, mass concentration being dominant in small particles. The mean particulate PCBs concentration was $6.9{\mu}g$ PCBs/g. The concentrations of PCB homologues in the gas phase were estimated based on the particle/gas partition coefficient ($K_p$) with the measured values of particulate PCBs in this study and they were comparable to those observed in other previous studies. Dry deposition fluxes were estimated by calculating dry deposition velocities.

Influence of constraint MgO deposition onto phosphors on luminance properties in AC Plasma Display Panels

  • Jeoung, Jin-Man;OH, P.Y.;Moon, M.W.;Lee, J.H.;Jeong, J.E.;Lee, H.J.;Han, Y.K.;Lee, S.B.;Jeong, S.H.;Yoo, C.K.;Yoo, N.R.;Choi, E.H.;Ko, B.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1215-1217
    • /
    • 2005
  • One of the important problems in recent AC-PDP technology is the image sticking. In this research, we have investigated the PDP cell with constraint deposition MgO on phosphor, the electrical and optical properties in the PDP cell were examined. Also, we have investigated the correlation with image sticking and degraded MgO protective layer, phosphor in AC-PDP. As a result, we measured the secondary electron emission coefficient ${\gamma}$, discharge characteristics and Brightness for the constraint degraded phosphor are compared with those of nondegraded phosphor.

  • PDF

Deposition Properties of $^{137}Cs$ in Marine Sediments

  • Park, G.;Lin, X.J.;Kim, W.;Kang, H.D.;Lee, H.L.;Kim, Y.;Doh, S.H.;Kim, D.S.;Yun, S.G.;Kim, C.K.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.353-360
    • /
    • 2003
  • The concentration of $^{137}Cs$, the particle size, and the contents of TOC, H, N and S were measured for sediments collected in the adjacent sea to Yangnam, Korea. The concentrations of $^{137}Cs$ in sediments are in the range of $^{137}Cs$ for sediments strongly depend on particle size and TOC content of sediments. The results of multiple regression analysis suggest that humic substances may have great influence on the deposition of $^{137}Cs$ in sediment.

Face Stability Assessment of Slurry-shield Tunnels - Concentrating on Slurry Clogging Effect - (슬러리 쉴드 터널의 막장 안정성 평가 - 슬러리의 폐색효과를 중심으로 -)

  • Lee, In-Mo;Lee, Sam;Cho, Kook-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.95-107
    • /
    • 2004
  • In this paper, the rheological characteristics of slurry used fur slurry-shield tunnels were studied with emphasis on penetration characteristics. The slurry penetration was modeled by soil-filter clogging theory. The coefficient of particle deposition was suggested as an indicator of sin clogging during tunnel construction and calculated through model tests. The measured slurry weight, clogged in the base soil, was compared with the value obtained from clogging theory. Based on the testing results, a stability analysis of a tunnel face was performed to pinpoint the most influential factor affecting stability of slurry-shield tunnels. It was found that the stability of tunnel face is dependent on the ratio of infiltration velocity to the coefficient of particle deposition, and the penetration distance of slurry increases with the ratio of infiltration velocity to the coefficient of particle deposition. Since the stability of tunnel face decreases with the slurry penetration distance, it was necessary to add some additives in order to reduce the slurry penetration distance. It was found that the ground condition needs additives when the soil has the effective particle diameter$(D_{10})$ larger than 0.75mm. It was also found that the tunnel face stability due to slurry penetration is significantly affected by the tunnel advance rate.

Effect of environment on the tribological behavior of Si-incorporated diamond-like carbon films (실리콘이 첨가된 다이아몬드상 카본 필름의 트라이볼로지적 특성에 미치는 환경변화의 영향)

  • 양승호;공호성;이광렬;박세준;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.42-48
    • /
    • 1999
  • An experimental study was performed to discover the effect of environment on the tribological behavior of Si-incorporated diamond-like carbon(Si-DLC) film slid on a steel ball. The films were deposited on Si(100) wafers from radio-frequency glow discharge of mixtures of benzene and dilute silane gases. Experiments using a ball-on-disk test-rig was performed under vacuum, dry air and ambient air conditions. It was observed that coefficient of friction was decreased as the environmental condition changes from vacuum, to dry air. It was also observed that the coefficient of friction decreased with increasing silicon concentration in the film. Chemical analyses of debris suggested that the low and stable friction coefficient is closely related to the silicon rich oxide debris and the rolling action.

  • PDF

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(S)-protopanaxadiol: in vitro and in vivo evaluation studies

  • Kim, Ki-Taek;Kim, Min-Hwan;Park, Ju-Hwan;Lee, Jae-Young;Cho, Hyun-Jong;Yoon, In-Soo;Kim, Dae-Duk
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.512-523
    • /
    • 2018
  • Background: 20(S)-Protopanaxadiol (20S-PPD) is a fully deglycosylated ginsenoside metabolite and has potent dermal antiaging activity. However, because of its low aqueous solubility and large molecular size, a suitable formulation strategy is required to improve its solubility and skin permeability, thereby enhancing its skin deposition. Thus, we optimized microemulsion (ME)-based hydrogel (MEH) formulations for the topical delivery of 20S-PPD. Methods: MEs and MEHs were formulated and evaluated for their particle size distribution, morphology, drug loading capacity, and stability. Then, the deposition profiles of the selected 20S-PPD-loaded MEH formulation were studied using a hairless mouse skin model and Strat-M membrane as an artificial skin model. Results: A Carbopol-based MEH system of 20S-PPD was successfully prepared with a mean droplet size of 110 nm and narrow size distribution. The formulation was stable for 56 d, and its viscosity was high enough for its topical application. It significantly enhanced the in vitro and in vivo skin deposition of 20S-PPD with no influence on its systemic absorption in hairless mice. Notably, it was found that the Strat-M membrane provided skin deposition data well correlated to those obtained from the in vitro and in vivo mouse skin studies on 20S-PPD (correlation coefficient $r^2=0.929-0.947$). Conclusion: The MEH formulation developed in this study could serve as an effective topical delivery system for poorly soluble ginsenosides and their deglycosylated metabolites, including 20S-PPD.