• Title/Summary/Keyword: the cause of wind

Search Result 556, Processing Time 0.034 seconds

Reliability of structures with tuned mass dampers under wind-induced motion: a serviceability consideration

  • Pozos-Estrada, A.;Hong, H.P.;Galsworthy, J.K.
    • Wind and Structures
    • /
    • v.14 no.2
    • /
    • pp.113-131
    • /
    • 2011
  • Excessive wind-induced motion in tall buildings can cause discomfort, affect health, and disrupt the daily activities of the occupants of a building. Dynamic vibration absorbers such as the tuned mass dampers (TMDs) can be used to reduce the wind-induced motion below a specified tolerable serviceability limit state (SLS) criterion. This study investigates whether the same probability of not exceeding specified wind-induced motion levels can be achieved by torsionally sensitive structures without/with linear/nonlinear TMDs subjected to partially correlated wind forces, if they are designed to just meet the same SLS criterion. For the analyses, different structures and the uncertainty in the response, wind load and perception of motion is considered. Numerical results indicate that for structures that are designed or retrofitted without or with optimum linear TMDs and satisfying the same SLS criterion, their probability of exceeding the considered criterion is very consistent, if the inherent correlation between the wind forces is considered in design. However, this consistency deteriorates if nonlinear TMDs are employed. Furthermore, if the correlation is ignored in the design, in many cases a slightly unconservative design, as compared to the designed by considering correlation, is achieved.

A 6 m cube in an atmospheric boundary layer flow -Part 1. Full-scale and wind-tunnel results

  • Hoxey, R.P.;Richards, P.J.;Short, J.L.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.165-176
    • /
    • 2002
  • Results of measurements of surface pressure and of velocity field made on a full-scale 6 m cube in natural wind are reported. Comparisons are made with results from boundary-layer wind-tunnel studies reported in the literature. Two flow angles are reported; flow normal to a face of the cube (the $0^{\circ}$ case) and flow at $45^{\circ}$. In most comparisons, the spread of wind-tunnel results of pressure measurements spans the full-scale measurements. The exception to this is for the $0^{\circ}$ case where the roof and side-wall pressures at full-scale are more negative, and as a result of this the leeward wall pressures are also lower. The cause of this difference is postulated to be a Reynolds Number scale effect that affects flow reattachment. Measurements of velocity in the vicinity of the cube have been used to define the mean reattachment point on the roof centre line for the $0^{\circ}$ case, and the ground level reattachment point behind the cube for both $0^{\circ}$ and $45^{\circ}$ flow. Comparisons are reported with another full-scale experiment and also with wind-tunnel experiments that indicate a possible dependency on turbulence levels in the approach flow.

An Experimental Study on the Estimation of Wind Force Coefficient of Floating Type Photovoltaic Energy Generation System (수상 태양광발전 시스템의 풍력계수 산정에 관한 실험적 연구)

  • Lee, Young-Geun;Lee, Nam-Hyung;Joo, Hyung-Joong;Yoon, Soon-Jong
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.60-68
    • /
    • 2013
  • In recent years, green house effect related natural disasters occur throughout the world. Carbon dioxide, mainly comes from the fossil fuel burning, is suspected to be the cause of green house effect. To reduce the emission of carbon dioxide, we need to find alternative energy resources such as photovoltaic energy. In this paper, the basic characteristics of wind force coefficient on a PV panel installed on the floating type PV energy generation system are investigated though the two-dimensional wind tunnel tests. Test variables included the angle of PV panel, direction of wind, number of rows of PV panel and attached or not attached frame. Based on the results obtained through the wind tunnel tests, it was found that the wind force coefficient can be used as a preliminary data in the design of the structure.

An Strategy of Increasing the Wind Power Penetration Limit with VSC-HVDC in Jeju Power System (전압형 HVDC에 의한 제주계통의 풍력한계용량 증대 방안)

  • LEE, SEUNGMIN;Chae, Sang Heon;Kim, Ho Min;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.461-462
    • /
    • 2015
  • The government on Jeju Special Self-governing Province has a policy named 'Carbon Free Island Jeju by 2030'. The main purpose in this policy is to install wind power system with the total capacity of 1.35 GW by 2020. When the demand load on Jeju Island power system is lower than entire output power, a lot of dump power will be produced from the large-scale wind farms. It will be able to cause the wind power limit on Jeju Island. Consequently, the additional power facility must be installed to ensure stable power system operation in Jeju Island and increase wind power limit. From this point, this paper proposes the installation of MMC-HVDC, which can supply power in real time in the desired direction. The effectiveness of MMC-HVDC based on measured data of Jeju Island power system will be verified by using PSCAD/EMTDC simulation program.

  • PDF

The Conceptual Study on Driving Factors for Wind based on Land and Sea Breeze in the Elementary Textbooks (초등학교 교과서 속 해륙풍에 기반한 바람이 부는 이유에 대한 개념적 고찰)

  • Lee, Gyuho
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.4
    • /
    • pp.486-501
    • /
    • 2015
  • In the elementary school science curriculum, wind is one of the most important concept. In particular, land and sea breeze has been a key example to deliver how wind is driven, and thus its model experiments have been used to help students understand causes of wind. Here we compare causes and explanations for wind and land and sea breeze between textbooks in colleges and elementary schools to examine any potential improvement for the contents. In addition, we conducted survey to examine how pre-service teachers understand land and sea breeze, and convection box experiment used in elementary school textbooks is useful to understand land and sea breeze. Based on the comparison, we find that college level textbook explains the cause of wind as atmospheric pressure difference while elementary school textbooks explain them differently according to curriculums. In the textbooks, there are a difference in the way described for land and sea breeze. Analysis of questionnaire indicate that pre-service teachers understood land and sea breeze correctly, and they selected the convection box experiment in 2009 curriculum textbooks as the most suitable one. Explanations and experiments for land and sea breeze in the textbooks have been revised as the modification of elementary school curriculums. We expect this study helps to deliver more solid contents for wind and land and sea breeze in the upcoming new curriculum.

Vibration control in wind turbines for performance enhancement: A comparative study

  • Rezaee, Milad;Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.107-131
    • /
    • 2016
  • The need for a more affordable, reliable, clean and secure energy has led to explorations in non-traditional sources, particularly renewable energies. Wind is one of the cleanest energy sources that plays a significant role in augmenting sustainability. Wind turbines, as energy convertors, are usually tall and slender structures, and depending on their location (inland or offshore), they can be subject to high wind and/or strong wave loadings. These loads can cause severe vibrations with detrimental effects on energy production, structural lifecycle and initial cost. A dissipativity analysis study was carried out to know whether wind turbine towers require damping enhancement or rigidity modifications for vibration suppression. The results suggest that wind turbines are lightly damped structures and damping enhancement is a potential solution for vibration lessening. Accordingly, the paper investigates different damping enhancement techniques for vibration mitigation. The efficacy of tuned mass damper (TMD), tuned liquid column damper (TLCD), tuned sloshing damper (TSD), and viscous damper (VD) to reduce vibrations is investigated. A comparison among these devices, in terms of robustness and effectiveness, is conducted. The VD can reduce both displacement and acceleration responses of the tower, better than other types of dampers, for the same control effort, followed by TMD, TSD, and finally TLCD. Nevertheless, the use of VDs raises concerns about where they should be located in the structure, and their application may require additional design considerations.

Wind-Resistant Safety Reviews of Traffic Signal Structures by Wind Tunnel Tests (풍동실험을 통한 교통신호 구조물의 내풍 안전성 검토)

  • Taik-Nyung Huh
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.833-840
    • /
    • 2024
  • According to recent data from the Korea Meteorological Administration(KMA), the frequency of typhoons around the Korea Peninsula is almost unchanged, but the intensity is on the rise due to climate change. A typhoon that has become so powerful can cause partial or complete damage to the traffic signal structures, limiting the operation of the vehicle and causing traffic congestion. If the traffic signal structure fails to function properly due to the influence of the typhoon, not only the v ehicle operation will be disrupted, but also direct damage to the traffic signal structure will occur. In addition, if the social overhead cost of traffic congestion is included, the recovery cost caused by the typhoon will increase to an extent that it is difficult to estimate. Therefore, in this study, a wind tunnel experiment was performed by producing a wind tunnel model of an existing fixed traffic signal structure and a traffic signal structure in which signs and traffic lights are hinged. Also, The fixed and hinge structures were modeled as 3D finite elements, and wind-resistant analysis was performed by wind speed, and, wind-resistant safety of traffic signal structures were analyzed and examined through wind-resistant analyses. From the comparative analysis of the results of experiment and FE analysis, it was known that the stress reduction rate of the hinge connection structure was at least 30% compared to that of the fixed connection structure from the results of the wind tunnel experiment and FE analysis. And As a result of finite element analysis for the maximum design wind speed of 50m/s, it was found that the maximum stress generated in the existing structure exceeded all the yield stress, but the maximum stress of the hinge connection structure was within the yield stress. Finally The hinge connection structure showed a relatively large stress reduction rate as the wind speed increased and the length of the lateral beam was shorter at the same wind speed.

Study on a Development of the Prediction Equation of the Wind Power Plant Noise (풍력발전소 소음 영향 예측식 개발에 관한 연구)

  • Gu, Jinhoi;Lee, Jaewon;Lee, Woo Seok;Jung, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • The wind power plants were installed in many places because of the low climate changing effects since 2000. Generally, the wind power plants located in the seaside and the mountainous area and the heights of the windmills are about 40 m~140 m above the ground level. So the noises emitted from the wind power plants propagate far away compared with other environment noise sources like trains and cars noise. Because of these reasons, the noise emitted from the wind power plant is easy to cause the additional social problems like as noise complaints. Under the situation, the ministry of environment has established the guideline to evaluate the environmental effects for the wind power plant. According to the guideline, the noise of the wind power plant has to meet 55 dB(A) at daytime and 45 dB(A) at night in the residential area, which is regulated in the noise and vibration management law. But, it is difficult to estimate the noise emitted from the wind power plant because of the absence of the prediction model of the wind power plant noise. Therefore, the noise prediction model for wind power plants using the regression analysis method is developed in this study. For the development of the model, the sound pressure levels of the wind power plants in Jeju island are measured and the correlations between the sound pressure levels are analyzed. Finally, the prediction equation of the wind power plant noise using by regression analysis method derived. The prediction equation for the wind power plant noise proposed in this study can be useful to evaluate the environmental effects in any wind power plant development district.

An overview of applicability of WEQ, RWEQ, and WEPS models for prediction of wind erosion in lands

  • Seo, Il Whan;Lim, Chul Soon;Yang, Jae Eui;Lee, Sang Pil;Lee, Dong Sung;Jung, Hyun Gyu;Lee, Kyo Suk;Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.381-394
    • /
    • 2020
  • Accelerated soil wind erosion still remains to date to cause severe economic and environmental impacts. Revised and updated models to quantitatively evaluate wind induced soil erosion have been made for specific factors in the wind erosion equation (WEQ) framework. Because of increasing quantities of accumulated data, the WEQ, the revised wind erosion equation (RWEQ), the wind erosion prediction system (WEPS), and other soil wind erosion models have been established. These soil wind erosion models provide essential knowledge about where and when wind erosion occurs although naturally, they are less accurate than the field-scale. The WEQ was a good empirical model for comparing the effects of various management practices on potential erosion before the RWEQ and the WEPS showed more realistic estimates of erosion using easily measured local soil and climatic variables as inputs. The significant relationship between the observed and predicted transport capacity and soil loss makes the RWEQ a suitable tool for a large scale prediction of the wind erosion potential. WEPS developed to replace the empirical WEQ can calculate soil loss on a daily basis, provide capability to handle nonuniform areas, and obtain predictions for specific areas of interest. However, the challenge of precisely estimating wind erosion at a specific regional scale still remains to date.

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.