• Title/Summary/Keyword: the cause of wind

Search Result 556, Processing Time 0.029 seconds

Analysis of Wind Pressure Coefficient for Spatial Structure Roofs by Wind Load Standards and Wind Tunnel Tests (국가별 풍하중 기준과 풍동실험에 따른 대공간 구조물 지붕의 풍압계수 분석)

  • Cheon, Dong-jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.103-113
    • /
    • 2017
  • Spatial Structure has suffered from a lot of damage due to the use of lightweight roofs. Among them, the damage caused by strong winds was the greatest, and the failure of the calculation of the wind load was the most frequent cause. It provides that wind tunnel test is used to calculate the wind load. However, it is often the case that the wind load is calculated based on the standard of wind load in the development design stage. Therefore based on this, the structure type and structural system and member design are often determined. Spatial structure is usually open at a certain area. The retractable roof structure should be operated with the open roof in some cases, so the wind load for the open shape should be considered, but it is not clear on the basis of the wind load standard. In this paper, the design wind pressure of a closed and retractable roof structure is calculated by KBC2016, AIJ2004, ASCE7-10, EN2005, and the applicability of wind pressure coefficient is compared with wind tunnel test.

Investigation of wind actions and effects on the Leaning Tower of Pisa

  • Solari, Giovanni;Reinhold, Timothy A.;Livesey, Flora
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.1-23
    • /
    • 1998
  • This paper describes wind investigations for the Leaning Tower of Pisa which were conducted as part of an overall evaluation of its behaviour. Normally a short, stiff and heavy building would not be a candidate for detailed wind analyses. However, because of extremely high soil pressures developed from its inclination, there has been increasing concern that environmental loading such as wind actions could combine with existing conditions to cause the collapse of the tower. The studies involved wind assessment at the site as a function of wind direction, analysis of historical wind data to determine extreme wind probabilities of occurrence, estimation of structural properties, analytical and boundary layer wind tunnel investigations of wind loads and evaluation of the response with special concern for loads in the direction of inclination of the tower and significant wake effects from the neighboring cathedral for critical wind directions. The conclusions discuss the role of wind on structural safety, the precision of results attained and possible future studies involving field measurements aimed at validating or improving the analytical and boundary layer wind tunnel based assessments.

Sustainable use of wind energy (풍력에너지의 환경친화적 이용)

  • Lee, Yeong-Heui
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.2
    • /
    • pp.46-50
    • /
    • 2011
  • Wind energy, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, and produces no greenhouse gas emissions during operation. However, the construction of wind farms is not universally welcomed because of their visual impact, competing land use, comprising human health impacts, building and crop damage, loss of amenities and ecological impact, impact on wildlife, danger to birds, safety hazard, aesthetics and noise. Offshore wind power, in particular, offers a huge potential to generate clean energy. However, the envisaged massive expansion of wind farms in oceans is already causing severe environmental conflicts. Wind farms cause further harm to already threatened oceans. Wind power has negligible fuel costs, but a high capital cost. The expansion of climate-friendly wind energy use both onshore and offshore can only be successful it the legal and organizational conditions undergo some clear improvements.

  • PDF

Aerodynamic mitigation of wind loads on a large-span cantilevered roof: A combined wind tunnel and CFD analysis

  • Chen Fubin;Wang Weijia;Yang Danqing;Zhenru Shu
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.203-214
    • /
    • 2024
  • Large-span cantilevered roof represents a unique type of structure that is vulnerable to wind loads. Inspired by the need to maximumly reducing the rooftop wind loads, this study examined the feasibility of positioning vented slots on the leading edge, and the effectiveness of such aerodynamic mitigation measures are assessed via both physical and numerical simulations. The reliability of numerical simulation was evaluated via comparisons with the wind tunnel tests. The results indicated that, the variation of venting hole arrangement can cause significant change in the rooftop wind load characteristics. For the cases involved in this study, the maximum reduction of mean and peak wind suction coefficients are found to be 9% and 8% as compared to the original circular slot without venting holes. In addition, the effect of slot shape is also evident. It was shown that the triangular shaped slot tends to increase the wind suction near the leading edge, whereas the hexagonal and octagonal shaped slots are found to decrease the wind suction. In particular, with the installation of octagonal shaped slot, the maximum reduction of wind suction coefficients near the leading edge reaches up to 31% as compared to the circular shaped slot, while the maximum reduction of mean wind suction coefficients is about 30%.

Logic tree approach for probabilistic typhoon wind hazard assessment

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.607-617
    • /
    • 2019
  • Global warming and climate change are increasing the intensity of typhoons and hurricanes and thus increasing the risk effects of typhoon and hurricane hazards on nuclear power plants (NPPs). To reflect these changes, a new NPP should be designed to endure design-basis hurricane wind speeds corresponding to an exceedance frequency of $10^{-7}/yr$. However, the short typhoon and hurricane observation records and uncertainties included in the inputs for an estimation cause significant uncertainty in the estimated wind speeds for return periods of longer than 100,000 years. A logic-tree framework is introduced to handle the epistemic uncertainty when estimating wind speeds. Three key parameters of a typhoon wind field model, i.e., the central pressure difference, pressure profile parameter, and radius to maximum wind, are used for constructing logic tree branches. The wind speeds of the simulated typhoons and the probable maximum wind speeds are estimated using Monte Carlo simulations, and wind hazard curves are derived as a function of the annual exceedance probability or return period. A logic tree decreases the epistemic uncertainty included in the wind intensity models and provides reasonably acceptable wind speeds.

Stability behavior of the transmission line system under incremental dynamic wind load

  • Sarmasti, Hadi;Abedi, Karim;Chenaghlou, Mohammad Reza
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.509-522
    • /
    • 2020
  • Wind load is the principal cause for a large number of the collapse of transmission lines around the world. The transmission line is traditionally designed for wind load according to a linear equivalent method, in which dynamic effects of wind are not appropriately included. Therefore, in the present study, incremental dynamic analysis is utilized to investigate the stability behavior of a 400 kV transmission line under wind load. In that case, the effects of vibration of cables and aerodynamic damping of cables were considered on the stability behavior of the transmission line. Superposition of the harmonic waves method was used to calculate the wind load. The corresponding wind speed to the beginning of the transmission line collapse was determined by incremental dynamic analysis. Also, the effect of the yawed wind was studied to determine the critical attack angle by the incremental dynamic method. The results show the collapse mechanisms of the transmission line and the maximum supportable wind speed, which is predicted 6m/s less than the design wind speed of the studied transmission line. Based on the numerical modeling results, a retrofitting method has been proposed to prevent failure of the tower members under design wind speed.

The Study on the Pityriasis Rosea in Oriental-Western Medicine (장미색비강진에 대한 동서의학적 고찰)

  • Lee, Kyou-Young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.35 no.4
    • /
    • pp.106-122
    • /
    • 2022
  • Objectives : In this study, we aimed to analyze the latest knowledge of pityriasis rosea(PR) through oriental-western medical review on PR. Methods : We searched Pubmed, CNKI, and OASIS to select papers related to the cause, mechanism, diagnosis, classification, treatment, and herbal treatment of PR. Results : The results are as follows. 1. Although the exact cause of PR is not known, it has recently been found that reactivation of latent human herpesvirus-6 and human herpesvirus-7 infection is a possible etiology. Most patients require emollients, antihistamines, topical steroids, and macrolides. Acyclovir, and narrow-band UVB therapy are also used. 2. The cause and mechanism of PR in Chinese and Korean medicine can be mainly summarized as wind-heat, blood heat, and blood deficiency and wind-dryness. Most of the herbal medicine used have the effects of clearing heat, cooling the blood, detoxifying, dispelling wind, relieving itching, nourishing blood, and moistening dryness. Conclusions : In Chinese and Korean medicine, it is necessary to organize the representative prescriptions according to pattern identification, and it is also necessary to study the atypical types of PR and its treatment methods. It is thought that research on oriental and western combination therapy should be continuously conducted, and efforts to develop Korean medicine formulations are needed to revitalize clinical research in Korea.

Power Quality Analysis of Wind-Diesel Hybrid Generation System Installation Area (복합발전 풍력-디젤 하이브리드 시스템 설치 지역의 전력품질 분석)

  • An, Hae-Joon;Kim, Hyun-Goo;Kim, Seok-Woo;Ko, Seok-Whan;Jang, Gil-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.539-541
    • /
    • 2009
  • A severely cold weather condition of King Sejong Station, Antarctica becomes a very severe condition for an installation/operation of wind generation system. When the existing wind generation system works, it may cause a damage and destruction of wind generation system and can bring about big problems in terms of the power quality. Accordingly, it is essential to obtain technologies for the installation and operation of small wind generation system for the polar region's wind generation, and to assess and demonstrate the performance in the severely-cold environment and the polar wind generation system's development, supplementation, alteration. Also, as the available power of King Sejong Station, Antarctica, the diesel generator has been mainly used, and the wind generator has been used in the hybrid form. Wind generation and diesel generation has the different load following control each other. In the wind generation, the generated power very rapidly changes according to the change of the velocity of the wind. On the other hand, the diesel generation shows very gentle change in the velocity of output. Therefore, the study is intended to analyze the 10kw small wind generator-diesel generator's power quality of King Sejong Station, Antarctica, which is the hybrid system installation area.

  • PDF

Wind tunnel modeling of flow over mountainous valley terrain

  • Li, C.G.;Chen, Z.Q.;Zhang, Z.T.;Cheung, J.C.K.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.275-292
    • /
    • 2010
  • Wind tunnel experiments were conducted to investigate the wind characteristics in the mountainous valley terrain with 4 simplified valley models and a 1:500 scale model of an existing valley terrain in the simulated atmospheric neutral boundary layer model. Measurements were focused on the mean wind flow and longitudinal turbulence intensity. The relationship between hillside slopes and the velocity speed-up effect were studied. By comparing the preliminary results obtained from the simplified valley model tests and the existing terrain model test, some fundamental information was obtained. The measured results indicate that it is inappropriate to describe the mean wind velocity profiles by a power law using the same roughness exponent along the span wise direction in the mountainous valley terrain. The speed-up effect and the significant change in wind direction of the mean flow were observed, which provide the information necessary for determining the design wind speed such as for a long-span bridge across the valley. The longitudinal turbulence intensity near the ground level is reduced due to the speed-up effect of the valley terrain. However, the local topographic features of a more complicated valley terrain may cause significant perturbation to the general wind field characteristics in the valley.

Feedforward Pitch Control Using Wind Speed Estimation

  • Nam, Yoon-Su;Kim, Jeong-Gi;Paek, In-Su;Moon, Young-Hwan;Kim, Seog-Joo;Kim, Dong-Joon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • The dynamic response of a multi-MW wind turbine to a sudden change in wind speed is usually slow, because of the slow pitch control system. This could cause a large excursion of the rotor speed and an output power over the rated. A feedforward pitch control can be applied to minimize the fluctuations of these parameters. This paper introduces the complete design steps for a feedforward pitch controller, which consist of three stages, i.e. the aerodynamic torque estimation, the 3-dimensional lookup table for the wind seed estimation, and the calculation of the feedforward pitch amount. The effectiveness of the feedforward control is verified through numerical simulations of a multi-MW wind turbine.