• Title/Summary/Keyword: the automorphism group

Search Result 90, Processing Time 0.023 seconds

NEW AND OLD RESULTS OF COMPUTATIONS OF AUTOMORPHISM GROUP OF DOMAINS IN THE COMPLEX SPACE

  • Byun, Jisoo
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.363-370
    • /
    • 2015
  • The automorphism group of domains is main stream of classification problem coming from E. Cartan's work. In this paper, I introduce classical technique of computations of automorphism group of domains and recent development of automorphism group. Moreover, I suggest new research problems in computations of automorphism group.

AUTOMORPHISMS OF K3 SURFACES WITH PICARD NUMBER TWO

  • Kwangwoo Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1427-1437
    • /
    • 2023
  • It is known that the automorphism group of a K3 surface with Picard number two is either an infinite cyclic group or an infinite dihedral group when it is infinite. In this paper, we study the generators of such automorphism groups. We use the eigenvector corresponding to the spectral radius of an automorphism of infinite order to determine the generators.

THE AUTOMORPHISM GROUPS OF ARTIN GROUPS OF EDGE-SEPARATED CLTTF GRAPHS

  • Byung Hee An;Youngjin Cho
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1171-1213
    • /
    • 2023
  • This work is a continuation of Crisp's work on automorphism groups of CLTTF Artin groups, where the defining graph of a CLTTF Artin group is connected, large-type, and triangle-free. More precisely, we provide an explicit presentation of the automorphism group of an edge-separated CLTTF Artin group whose defining graph has no separating vertices.

REPRESENTATIONS OF THE AUTOMORPHISM GROUP OF A SUPERSINGULAR K3 SURFACE OF ARTIN-INVARIANT 1 OVER ODD CHARACTERISTIC

  • Jang, Junmyeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.287-295
    • /
    • 2014
  • In this paper, we prove that the image of the representation of the automorphism group of a supersingular K3 surface of Artin-invariant 1 over odd characteristic p on the global two forms is a finite cyclic group of order p + 1. Using this result, we deduce, for such a K3 surface, there exists an automorphism which cannot be lifted over a field of characteristic 0.

Code automorphism group algorithms and applications

  • Cho, Han-Hyuk;Shin, Hye-Sun;Yeo, Tae-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.575-584
    • /
    • 1996
  • We investigate how the code automorphism groups can be used to study such combinatorial objects as codes, finite projective planes and Hadamard matrices. For this purpose, we write down a computer program for computing code automorphisms in PASCAL language. Then we study the combinatorial properties using those code automorphism group algorithms and the relationship between combinatorial objects and codes.

  • PDF