• Title/Summary/Keyword: the Yucheon Granite

Search Result 12, Processing Time 0.02 seconds

SHRIMP Age Datings and Volcanism Times of the Igneous Rocks in the Cheolwon Basin, Korea (철원분지 화성암류의 SHRIMP 연령측정과 화산작용 시기)

  • Hwang, Sang-Koo;An, Yu-Mi;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.231-241
    • /
    • 2011
  • Cheolwon Group in the Cheolwon Basin, which lies northwest of the Gyeonggi massif, has been correlated to the Yucheon Group in the Gyeongsang Basin, but its ages and volcanic times are defined to be considerately earlier than the other one. In this study, SHRIMP zircon U-Pb ages were determined from the igneous rocks in the Cheolwon Basin. The mean ages from zircons are $115.0{\pm}1.1Ma$ in rhyolite, and $111.24{\pm}0.85Ma$ and $109.1{\pm}1.1Ma$ in granite porphyry. The minimum age is 113 Ma in the Jijangbong Tuff. Such age in the rhyolite define the intrusion time of ring dykes, suggesting a caldera collapse following eruption of the Dongmakgol Tuff. Such age in the Jijangbong Tuff represent latest volcanism as postcaldera in the basin. The volcanic rocks in the basin were erupted during late Aptian, and are correlated to the Sindong Group in the Gyeongsang Basin. The plutonism in the basin occurred during $111.24{\pm}0.85Ma{\sim}109.1{\pm}1.1Ma$, following the volcanism. The age distribution of the analyzed zircons in the Jijangbong Tuff indicates the presence of foreign zircons derived from protoliths, regarding a wide span of zircon ages from Cretaceous to Jurassic, Triassic, early and late Protozoic, and Archean. The Archean age suggests the possible presence of the Archean protoliths with such age, which have not been exposed on the surface. The age distribution with wide span suggests that its vent is located in an area that several strata with different ages piled up and intercepted with some intrusives.

A Technique Assessing Geological Lineaments Using Remotely Sensed Data and DEM : Euiseons Area, Kyungsang Basin (원격탐사자료와 수치표고모형을 이용한 지질학적 선구조 분석기술: 경상분지 의성지역을 중심으로)

  • 김원균;원중선;김상완
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.139-154
    • /
    • 1996
  • In order to evaluate the sensor`s look direction bias in the Landsat TM image and to estimate trends of primary geological lineaments, we have attempted to systematically compare lineaments in TM image, relief shadowed DEM's, and actual lineaments of geologic and topographic map through the Hough transform technique. Hough transform is known to be very effective to estimate the trend of geological lineaments, and help us to obtain the true trends of lineaments. It is often necessary to compensate the preferential enhancements of terrain lineaments in a TM image occurred by to look direction bias, and that can be achieved by utilizing an auxiliary data. In this study, we have successfully adopted the relief shadowed DEM in which the illuminating azimuth angle is perpendicular to look direction of a TM image for assessing true trends of geological lineaments. The results also show that the sum of four relief shadowed DEM's directional components can possibly be used as an alternative. In Euiseong-gun area where Sindong Group and Mayans Group are mainly distributed, geological lineaments trending $N5^{\circ}$~$10^{\circ}$W are dominant, while those of $N55^{\circ}$~$65^{\circ}$ W are major trends in Cheongsong-gun area where Hayang Group, Yucheon Group and Bulguksa Granite are distributed. Using relief shadowed DEM as an auxiliary data, we found the $N55^{\circ}$~$65^{\circ}$ W lineaments which are not cleanly observed in TM image over Euiseong-gun area. Compared with the trend of Gumchon and Gaum strike-slip faults, these lineaments are considered to be an extension of the faults. Therefore these strike-slip faults possibly extend up to Sindong Group in the northwest parts in the study area.