• Title/Summary/Keyword: the Sea of Okhotsk

Search Result 52, Processing Time 0.025 seconds

Characteristics of Weather and Climate over the Okhotsk Sea

  • KIM Young Seup;HAN Young Ho;CHEONG Hyeong Bin;DASHKO Nina A.;PESTEREVA Nina M.;VARLAMOV Sergey M.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.974-983
    • /
    • 1997
  • The Okhotsk Sea is unique natural object with climatic peculiarities. The climate of the Okhotsk Sea results from the general distribution of solar radiation during a year, and the characteristics of the atmospheric circulation that varies through a year: In cold half year the main pressure formations are Siberian high and Aleutian low. Asian low centered on Afghanistan dominates over the Asian continent in summer. The North-Pacific sea surface is under effect of permanent North Pacific high. The changes in their position from year to year are very significant. The anticyclonic activity over the Far Eastern Seas is one of the main factors for the formation of weather anomalies over the adjacent territories. The analysis of summer weather characteristics over the coast of Okhotsk and East Sea using the data obtained from Hydrometeorological stations during $1949\~1990$ showed that, to a great extent, distribution of the air temperature depends on thermal state of the Okhotsk Sea and atmospheric circulation over it. We show some relations between weather characteristics and the intensity of atmospheric action center for the North Pacific high in summer when its ridge propagates to Okhotsk Sea. Correlation coefficients between air pressure over the Okhotsk Sea and air temperature for the coastal areas reach up to 0.7. Analysis of the spatial-temporal distribution of main meteorological values over the Okhotsk Sea such as air pressure, and air temperature are also performed.

  • PDF

Natural gas hydrate occurrence and detection in the Sea of Okhotsk

  • Jin Young-Keun;CHAOS Scientific Party CHAOS Scientific Party
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.47-49
    • /
    • 2006
  • The Sea of Okhotsk is the unique area providing the highest methane production rate of the northern hemisphere. The area of focused fluid venting offshore the NE Sakhalin continental slope was investigated during the CHAOS (Hydro-Carbon Hydrate Accumulations in the Okhotsk Sea) expeditions onboard of RV "Akademik Lavrentyev" In 2003, 2005 and 2006. The International Research Project CHAOS (Russia-Korea-Japan) aimed at the study of gas hydrate formation processes associated with the fluid venting in the Sea of Okhotsk. Several new gas hydrate accumulations were discovered during the cruise. Hydrate-associated structures have been named as KOPRI, VNIIOKeangeologia, POI and KIT (the names of cruise participant institutes) Some of hydrate-bearing cores contain big amount of gas hydrates: massive gas hydrate layers (up to 35cm thick) were recovered. The shallowest submarine gas hydrate accumulations in the world (at the depth less then 400m) were discovered during the cruise.

  • PDF

SEASONAL AND INTERANNUAL VARIABILITY OF CHLOROPHYLL A IN OKHOTSK SEA FROM SEAWIFS DATA

  • Tshay, Zhanna R.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.913-916
    • /
    • 2006
  • Spatial distribution, seasonal and interannual variability of chlorophyll a concentration in Okhotsk Sea from SeaWiFS data between 2001 and 2004 were describe. An Empirical Orthogonal Function method was applied for analysis data. The ten modes described about 85% of total variance. Two maxima were defined - more intensive in spring and weaker in autumn. The first mode showed zones with chlorophyll a concentration during maximum bloom. The second mode specified timing of spring bloom in various regions in Okhotsk Sea. Analysis of SeaWiFS data indicated connection between highest chlorophyll a concentration and sea surface temperature limits during spring bloom. Similar relation was not found during fall bloom.

  • PDF

Study on effective band of advanced microwave scanning radiometer (AMSR) for observing first year sea ice in the Okhotsk Sea by airborne microwave radiometer (AMR)

  • Nakayama, Masashige;Nishio, Fumihiko;Tanikawa, Tomonori;Cho, Kohei;Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.456-461
    • /
    • 1999
  • It is very important for monitoring the interannual variability of sea ice extents in the Okhotsk Sea because the global warming has firstly appeared around the Okhotsk Sea, locating around the southernmost region of sea ice cover in the Northern Hemisphere. In order to develop the sea ice concentration algorithm by microwave sensors onboard satellite, electromagnetic properties of sea ice in the Okhotsk Sea, therefore, were observed by airborne microwave radiometer (AMR), which has the same frequencies as AMSR (Advanced Microwave Scanning Radiometer), ADEOS-II, launching on November, 2000. On this study, it is discussed how to make the image of AMR-EFOV and the video image with nadir angle under flight at the same time, and superimpose the brightness temperature data by AMR-EFOV on the video mosaiced images. For comparing SPOT image, it is clearly that the variation of brightness temperature is small in 89GHz V-pol without the sea ice types and increase at the lower frequency-band.

  • PDF

Volume Transport through the La-Perouse (Soya) Strait between the East Sea (Sea of Japan) and the Sea of Okhotsk

  • Saveliev Aleksandr Vladimirovich;Danchenkov Mikhail Alekseevich;Hong Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Seasonal and interannual variation of volume transport through the La-Perouse Strait were estimated using the difference of sea level observed at Krillion of Sakhalin, Russia, and Wakkanai of Hokkaido, Japan, during the period of 1975-1988. Historical sea level measurements between Russian and Japanese tide gauge data were normalized using an independent direct volume transport measurement. Volume transport from the East Sea (Sea of Japan) to the Sea of Okhotsk varied from -0.01 to 1.18 Sv with an annual mean value of 0.61 Sv. Monthly water transport rates showed a unimodal distribution with its maximum occurring in summer (August) and minimum in winter (December-February). The annual mean volume transport varied from 0.2 to 0.8 Sv during the period of 1975-1988 with the maximum variance of 0.6 Sv.

Morphology and phytogeography of Laminaria appressirhiza and L. inclinatorhiza (Phaeophyceae) from the Sea of Okhotsk

  • Klochkova, Tatyana A.;Kim, Gwang-Hoon;Belij, Mihail N.;Klochkova, Nina G.
    • ALGAE
    • /
    • v.27 no.3
    • /
    • pp.139-153
    • /
    • 2012
  • The re-examination of morphological and anatomical characters of Laminaria appressirhiza and L. inclinatorhiza collected from different localities in the Sea of Okhotsk was performed. Despite their commercial and ecological importance to the region they have not been comprehensively reviewed since their first description in 1970. Our results show that some original diagnostic key characters (e.g., shape of holdfast, shape of sporangial sori, and dissection of blade) are not stable and have deviations from the type morphology when plants grow in different environments. In L. inclinatorhiza, the sporangial sori development occurred differently to the pattern indicated in original species description as they did not develop simultaneously on both sides of the blade. Instead, the sporangial sori outlines on both sides of the blade did not coincide at first and only became coincident later. Also, a deep-water population of L. inclinatorhiza with an unusual and interesting morphology, growing at depths of 15-25 m on opened rocky coasts in Taujskaya Bay (northern part of the Sea of Okhotsk) was found. The stable diagnostic key characters to distinguish these two species are the cone-like, multilayered, very thick and massive holdfast (in L. inclinatorhiza) and rolled margins of blades, lamellar rosette-like part of thallus, and sporangial sori developing only on one side of the blade (in L. appressirhiza). The ecological characteristics, distribution, and abundance of both species in the Sea of Okhotsk are discussed. Both species are perennial and widely distributed in the region. L. appressirhiza is more often found as a subdominant species among other kelps, forming maximum biomass and density of 7-9 kg and 8-25 plants per $1m^2$, respectively. L. inclinatorhiza sometimes forms local mono-species communities with maximum biomass and density of 10-12 kg and 10-15 plants per $1m^2$, respectively.

A Study on the Frequency and Intensity Variations of Okhotsk High: Focused on the Korean Peninsula (오호츠크해고기압의 출현일과 강도의 변동에 관한 연구 -한반도에 영향을 미친 날을 중심으로-)

  • Cho, Li-Na;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.36-49
    • /
    • 2011
  • This paper aims to investigate the frequency and intensity variations of Okhotsk high pressure system focused on the Korean Peninsula. Weather chart (00UTC), daily weather data and reanalysis data were used. The first occurrence date of Okhotsk high pressure system tends to be earlier in those years that surrounding land air temperature in April is high. The frequency of Okhotsk high has recently decreased, and its intensity tends to be stronger when the difference between sea surface temperature and surrounding land air temperature is big. The frequency of Okhotsk high in April, May, June and July increases when surrounding land air temperature is high, and its intensity grows when the difference between surrounding land air temperature and sea surface temperature is big. The frequency of Okhotsk high may increase and its intensity may increase when the first occurrence date comes earlier. In June, however, the reverse may apply.

Brown algae (Phaeophyceae) from Russian Far Eastern seas: re-evaluation of Laminaria multiplicata Petrov et Suchovejeva

  • Klochkova, Tatyana A.;Kim, Gwang-Hoon;Lee, Kyung-Min;Choi, Han-Gu;Belij, Mihail N.;Klochkova, Nina G.
    • ALGAE
    • /
    • v.25 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Eight unusual individuals of a laminariaceaen species were collected from the Sea of Okhotsk in 1974 and described as a new species, Laminaria multiplicata Petrov et Suchovejeva in 1976. Since that time no new information, including pictures and numerical data, has been provided, although the species was cited in floristic lists of the Sea of Okhotsk based on the first record in 1976. We investigated a type and 3 paratypes of L. multiplicata and strongly believe that they were wrongfully identified abnormal plants of L. gurjanovae A. Zinova. Therefore, the species L. multiplicata needs to be closed.

Sea Ice Extents and global warming in Okhotsk Sea and surrounding Ocean - sea ice concentration using airborne microwave radiometer -

  • Nishio, Fumihiko
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.76-82
    • /
    • 1998
  • Increase of greenhouse gas due to $CO_2$ and CH$_4$ gases would cause the global warming in the atmosphere. According to the global circulation model, it is pointed out in the Okhotsk Sea that the large increase of atmospheric temperature might be occurredin this region by global warming due to the doubling of greenhouse effectgases. Therefore, it is very important to monitor the sea ice extents in the Okhotsk Sea. To improve the sea ice extents and concentration with more highly accuracy, the field experiments have begun to comparewith Airborne Microwave Radiometer (AMR) and video images installed on the aircraft (Beach-200). The sea ice concentration is generally proportional to the brightness temperature and accurate retrieval of sea ice concentration from the brightness temperature is important because of the sensitivity of multi-channel data with the amount of open water in the sea ice pack. During the field experiments of airborned AMR the multi-frequency data suggest that the sea ice concentration is slightly dependending on the sea ice types since the brightness temperature is different between the thin and small piece of sea ice floes, and a large ice flow with different surface signatures. On the basis of classification of two sea ice types, it is cleary distinguished between the thin ice and the large ice floe in the scatter plot of 36.5 and 89.0GHz, but it does not become to make clear of the scatter plot of 18.7 and 36.5GHz Two algorithms that have been used for deriving sea ice concentrations from airbomed multi-channel data are compared. One is the NASA Team Algorithm and the other is the Bootstrap Algorithm. Intrercomparison on both algorithms with the airborned data and sea ice concentration derived from video images bas shown that the Bootstrap Algorithm is more consistent with the binary maps of video images.

  • PDF

Geophysical Investigation of Gas Hydrate-Bearing Sediments in the Sea of Okhotsk (오호츠크해 가스하이드레이트 퇴적층의 지구물리 탐사)

  • Jin, YoungKeun;Chung, KyungHo;Kim, YeaDong
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.207-215
    • /
    • 2004
  • As the sea connecting with the East Sea, the Sea of Okhotsk is the most potential area of gas hydrates in the world. In other to examine geophysical structures of gas hydrate-bearing sediments in the Sea of Okhotsk, the CHAOS (hydro-Carbon Hydrate Accumulation in the Okhotsk) international research expedition was carried out in August 2003. In the expedition, high-resolution seismic and geochemical survey was also conducted. Sparker seismic profiles show only diffusive high-amplitude reflections without BSRs at BSR depth. It means that BSR appears to be completely different images on seismic profiles obtained using different frequencies. Many gas chimneys rise up from BSR depth to seafloor. The chimneys can be divided into two groups with different seismic characteristics; wipe-out (WO) and enhanced reflection (ER) chimneys. Different seismic responses in the chimneys would be caused by amount of gas and gas hydrates filling in the chimneys. In hydroacoustic data, a lot of gas flares rise up several hundreds meters from seafloor to the water column. All flares took placed at the depths within gas hydrate stability zone. It is interpreted that gas hydrate-bearing sediments with low porosity and permeability due to gas hydrate filling in the pore space make good pipe around gas chimneys in which gas is migrating up without loss of amount. Therefore, large-scale gas flare at the site on gas chimney releases into the water column.

  • PDF