• Title/Summary/Keyword: the Phase of Order

Search Result 6,130, Processing Time 0.042 seconds

POWER FACTOR CORRECTION OF CO2 WELDING MACHINE USING SINGLE-SWITCH THREE-PHASE AC/DC CONVERTER

  • Kim, Jse-Mun;Kim, Yuen-Chung;Ahn, Jung-Jun;Won, Chung-Yuen;Kim, Sei-Chan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.663-667
    • /
    • 1998
  • This paper describes for reducing harmonic distortion on CO2 welding machine with nonlinear load characteristic using single-switch three-phase AC/DC converter. The low-order harmonic component amplitude of the phase current of single-switch three-phase discontinuous mode is calculated. Experimental results show that CO2 welding machine with single-switch three-phase AC/DC converter is effectively controlled with power factor correction for phase current during welding time.

  • PDF

Balanced model reduction of non-minimum phase plant into minimum phase plant (비최소 위상 플랜트의 최소 위상 플랜트로의 균형 모델 저차화)

  • 구세완;권혁성;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1205-1208
    • /
    • 1996
  • This paper proposes balanced model reduction of non-minimum phase plant. The algorithm presented in this paper is to convert high-order non-minimum phase plant into low-oder minimum phase plant using balanced model reduction. Balanced model reduction requires the error bound that Hankel singular value produces. This algorithm shows the tolerance that admits the method of this paper.

  • PDF

A Study on Pulse Shaping of Linear Phase filter block with Variable Cutoff Frequency in PCM/FM transmission (PCM/FM 전송에서 가변 컷오프 특성을 갖는 선형위상 필터 블록의 펄스 성형에 관한 연구)

  • Lee Sang-Rae;Ra Sung-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.65-73
    • /
    • 2006
  • The purpose of this study is to design and analyze the pre-modulation filter with the variable -3dB cutoff frequency and linear phase response for bandlimiting the allocation of radio frequency bandwidth in PCM/FM transmission system. For the implementation of this required filter, the digital FIR filter, DAC and variable 2nd order LPF have been constructed with the filter block which designed and analyzed by each stage in order to satisfy the attenuation characteristic requirement of the analog 7th order bessel filter. The paper also concerned the linear phase properties for the filter block. Especially we have carried out the linear phase simulation with real parts for variable 2nd order LPF and compared this simulation results with the one of the fixed bandwidth 2nd order bessel filter for validating the linear phase requirement.

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF

Fractional-N Frequency Synthesizer with a l-bit High-Order Interpolative ${\sum}{\Delta}$ Modulator for 3G Mobile Phone Application

  • Park, Byeong-Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • This paper presents a 18-mW, 2.5-㎓ fractional-N frequency synthesizer with l-bit $4^{th}$-order interpolative delta-sigma ($\Delta{\;}$\sum$)modulator to suppress fractional spurious tones while reducing in-band phase noise. A fractional-N frequency synthesizer with a quadruple prescaler has been designed and implemented in a $0.5-\mu\textrm{m}$ 15-GHz $f_t$ BiCMOS. Synthesizing 2.1 GHzwith less than 200 Hz resolution, it exhibits an in-band phase noise of less than -85 dBc/Hz at 1 KHz offset frequency with a reference spur of -85 dBc and no fractional spurs. The synthesizer also shows phase noise of -139 dBc/Hz at an offset frequency of 1.2 MHz from a 2.1GHz center frequency.

Study on Pressure Variation around an Open Cavity (공동 주위에서의 압력 변화에 대한 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.843-846
    • /
    • 2004
  • Cavity tone is generated due to the feedback between flow and acoustic wave. It is recognized that the period is determined by the time required for the flow convection in one direction, the time required for the acoustic propagation in the other direction and the time for phase shift depending on the flows and mode. Most of the phenomena have been investigated by experiments and a simple but fundamental theory. But the cause of the phase shift and the correctness of the theory have not been clearly explained so far. In this paper, the phenomena are calculated numerically to obtain detail information of flow and acoustic wave to explain the mechanism including the phase. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. The data are reduced using cross correlation function in space and time and cross spectral density function which has phase information. Abrupt change in pressure near corner in cavity is observed and is relate to phase variation. The time required for the feedback between the flow and acoustic wave is calculated after the numerical simulation f3r various modes. The periods based on the time calculated using the above method and direct observation from the acoustic waves generated and propagated in the numerical simulation are compared. It is found that no phase shift is required if we examine the time required carefully. Rossiter's formula for the cavity tone used for quick estimation needs to be modified far some modes.

  • PDF

A Fast and Robust Grid Synchronization Algorithm of a Three-phase Converters under Unbalanced and Distorted Utility Voltages

  • Kim, Kwang-Seob;Hyun, Dong-Seok;Kim, Rae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1101-1107
    • /
    • 2017
  • In this paper, a robust and fast grid synchronization method of a three-phase power converter is proposed. The amplitude and phase information of grid voltages are essential for power converters to be properly connected into the utility. The phase-lock-loop in synchronous reference frame has been widely adopted for the three-phase converter system since it shows a satisfactory performance under balanced grid voltages. However, power converters often operate under abnormal grid conditions, i.e. unbalanced by grid faults and frequency variations, and thus a proper active and reactive power control cannot be guaranteed. The proposed method adopts a second order generalized integrator in synchronous reference frame to detect positive sequence components under unbalanced grid voltages. The proposed method has a fast and robust performance due to its higher gain and frequency adaptive capability. Simulation and experimental results show the verification of the proposed synchronization algorithm and the effectiveness to detect positive sequence voltage.

Performance Improvement of Single-phase PLL Control using State Observer (상태관측기를 이용한 단상 PLL제어의 성능 개선)

  • Hwang, Hee-Hun;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.96-104
    • /
    • 2009
  • This paper proposes a single-phase Phase-locked loop (PLL) of the virtual two phase generator using full-order state observer, which is essential to find phase and frequency of the single-phase source. The conventional methods cannot remove the low-order harmonics included in source voltage, which influencesto whole PLL control system. The proposed algorithm separates fundamental wave from harmonics, and removes harmonics effectively. Therefore it generates only the fundamental wave. As it controls virtual voltage and input voltage together, it decreases steady-state error. From simulation and experimental results, the generated frequency by the proposed PLL which it plans, converges to the actual value, and the steady-state error is much reduced under given harmonic voltages. It is also confirmed that the proposed algorithm removed harmonics effectively and it generates only the fundamental wave.

The Design of Reconstruction Filter for Order Tracking in Rotating Machinery (회전기기 진동의 차수 추종을 위한 재합성 필터의 설계)

  • 정승호;박영필
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • In the study, the design method of reconstruction filter is studied for synchronized sampling which is necessary for order tracking in rotating machinery. The original data sampled at constant intervals, using fixed anti- aliasing filters, is reconstructed by digital reconstruction filter and is resampled at new sampling times calculated by a suitable shaft angle encoder pulse arrival times in order to synchronize with shaft velocity. In addition to eliminating the tracking synthesizer and filters, this new method has no phase noise due to phase-locked loops.

  • PDF

Factor Analysis of the Somatosensory for Foot according to the Instability Level of Snatch Lifting (역도 인상동작 불안정성 수준에 따른 발바닥 체성감각요인 분석)

  • Moon, Young Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Objective: It is to find factors related to stability through analysis of plantar pressure factors according to the level of instability when performing Snatch. Method: Foot pressure analysis was performed while 10 weightlifters performed 80% of the highest level of Snatch, and motion was classified and analyzed in 3 grades according to the level of instability. Results: First, in Bad Motion, the movement distance of the pressure center in the direction of ML and AP was larger significantly in Phase 2. Second, in Phase 2, the number of zero-crossing in the AP direction was larger statistically significantly in Good Motion. Third, in the bad motion in Phase 3, the number of zero-crossing in the ML direction showed a significantly larger value. Fourth, in Phase 4, it was found that the more stable the lock out motion, the greater the activity of foot controlling in the left and right directions. Fifth, Phase 3, the greater the Maximum/Mean foot pressure value, the more stable the pulling action. Sixth, in Phase 2, the foot pressure was concentrated with a wide distribution in the midfoot and rearfoot. Seventh, the triggering number of the forefoot region was small in the last pull phase. Eighth, the number of triggers in the toe area was significantly higher during Good Motion in Phase 4. Conclusion: Summarizing the factors of instability in Snatch, there was no significant difference in Phase 1 for each condition. In order to enhance the stability in Phase 2, the sensory control ability in the AP direction is required, and focusing the foot pressing motion with a wide distribution in the middle and rear parts increases the instability. In Phase 3, it was found that the more unstable, the more sensory control activity was performed in the ML direction, the stronger the forefoot pressing action should be performed for a stable Snatch. In Phase 4, It is important that the feet sensory control activity in ML directions and the control ability of the toes in order to have stable Lock out motion.