• 제목/요약/키워드: the MLP neural network

검색결과 260건 처리시간 0.029초

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete

  • Zhao, Yinghao;Moayedi, Hossein;Bahiraei, Mehdi;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.753-763
    • /
    • 2020
  • The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.

신경회로망과 퍼지필터를 사용한 근전도신호의 기능변별에 관한 연구 (A Study on Function Discrimination for EMG Signals Using Neural Network and Fuzzy Filter)

  • 장영건;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권3호
    • /
    • pp.355-364
    • /
    • 1994
  • The most important requirement for the controller of a prosthetic arm is that it has a high fidelity discriminator where the motion control may be performed open loop using EMG signals as a control source. Therefore, it is very effective method to reduce the influence of misclassification of classifier for the total system performance. This paper presents the new function discrimination method which combines MLP classifier and frizzy filter by stages for the requirement. The major advantage of MLP is a consistent learning capability for the easy adaptation to environments. The fuzzy filter uses all informations of MLP outputs and prior EMG activity informations which increase as the experience increases. That property is superior to one which uses maximum output of MLP in view of information amounts and quality. Simulation result shows that proposed method is superior to the probabilistic model, MLP model and the combined model of both in the respect of discrimination quaity.

  • PDF

MLP 층을 갖는 CNN의 설계 (Design of CNN with MLP Layer)

  • 박진현;황광복;최영규
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • 제33권1호
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

인공신경망 이론을 이용한 충주호의 수질예측 (Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm)

  • 정효준;이소진;이홍근
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상 (Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology)

  • 이원진;이의훈
    • 한국수자원학회논문집
    • /
    • 제56권11호
    • /
    • pp.801-813
    • /
    • 2023
  • 최근 인공신경망(Artificial Neural Network, ANN)의 연구가 활발하게 진행되면서 ANN을 이용하여 하천의 수질을 예측하는 연구가 진행되고 있다. 그러나 ANN은 Black-box의 형태이기 때문에 ANN 내부의 연산과정을 분석하는데 어려움이 있다. ANN의 연산과정을 분석하기 위해 설명가능한 인공지능(eXplainable Artificial Intelligence, XAI) 기술이 사용되고 있으나, 수자원 분야에서 XAI 기술을 활용한 연구는 미비한 실정이다. 본 연구는 XAI 기술 중 Layer-wise Relevance Propagation (LRP)을 사용하여 낙동강의 다산 수질관측소의 수온, 용존산소량, 수소이온농도 및 엽록소-a를 예측하기 위한 Multi Layer Perceptron (MLP)을 분석하였다. LRP를 기반으로 수질을 학습한 MLP를 분석하여 수질을 예측하기 위한 최적의 입력자료를 선정하고, 최적의 입력자료를 이용하여 학습한 MLP의 예측결과에 대한 분석을 실시하였다. LRP를 이용하여 최적의 입력자료를 선정한 결과를 보면, 수온, 용존산소량, 수소이온농도 및 엽록소-a 모두 주변지역의 일 강수량을 제외한 입력자료를 학습한 MLP의 예측정확도가 가장 높았다. MLP의 용존산소량 예측결과에 대한 분석결과를 보면, 최고점에서 수소이온농도 및 용존산소량의 영향이 크고 최저점에서는 수온의 영향이 큰 것으로 분석되었다.

다중 신경망을 이용한 인식단위 결합 기반의 인쇄체 문자인식 (Machine Printed Character Recognition Based on the Combination of Recognition Units Using Multiple Neural Networks)

  • 임길택;김호연;남윤석
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.777-784
    • /
    • 2003
  • 본 논문에서는 다중 신경망을 이용한 인식단위 결합 기반의 인쇄체 문자인식 방법을 제안한다. 입력 문자영상은 한글 문자 형식 6가지와 한글 이외의 기타 문자 형식의 전체 7가지 형식으로 분류되어 인식된다. 한글 문자는 2단계의 MLP 신경망 인식기에 의해 인식된다. 첫째 단계에서는 한글 문자를 자소의 조합 형태에 따라 2개 또는 3개의 인식단위로 나누고, 각 인식단위에서 추출된 방향각도 특징 벡터를 입력으로 하는 MLP 신경망으로 1차 인식한다. 둘째 단계에서는 첫째 단계의 인식단위별 MLP 신경망 인식기의 인식양상 특징을 추출하고 다른 MLP 신경망에 입력하여 최종 한글 문자인식을 한다. 한글 이외의 기타 문자의 인식을 위해서는 단일 MLP 신경망을 사용한다. 인식 실험에서는 실제 우편물 50,000통 영상으로부터 추출한 문자영상 데이터베이스를 이용하였는데, 실험 결과 본 논문에서 제안한 방법이 매우 우수함을 알 수 있었다.

MLP-VQ와 가중 DHMM을 이용한 연결 숫자음 인식에 관한 연구 (A study on the connected-digit recognition using MLP-VQ and Weighted DHMM)

  • 정광우;홍광석
    • 전자공학회논문지S
    • /
    • 제35S권8호
    • /
    • pp.96-105
    • /
    • 1998
  • 본 논문에서는 화자 독립 연속 숫자음 인식 시스템의 성능향상을 위하여 MLP-VQ (Multi-Layer Perceptron-Vector Quantizer)를 이용한 가중 DHMM(WDHMM : Weighted Discrete Hidden Markov Models)을 제안한다. MLP 신경망의 출력분포는 입력 패턴과 학습 패턴들간의 비선형 매핑을 통해 각 패턴들간의 유사도를 나타내는 확률분포를 갖는다. 본 논문에서는 MLP 신경망의 출력분포중 가장 높은 출력 값을 갖는 MLP 신경망의 출력 노드를 인덱스를 이용하여 코드워드를 생성하는 MLP-VQ를 제안하였다. 제안된 MLP-VQ는 기존의 VQ에 비해 현재 입력패턴과 학습된 각 class 패턴들간의 유사성 정도를 인식모델을 반영할 수 있는 특징을 갖는다. 또한 MLP 신경망의 출력분포를 DHMM의 심벌 발생 확률의 가중치로 이용하는 가중 DHMM보다는 음소 클래스간의 관계를 인식모델에 반영할 수 있기 때문에 적은 계산양의 증가로 인식기의 성능을 14.71%개선할 수 있었다. 실험결과에 의하면, MLP-VQ와 WDHMM에 의한 화자독립 연결 숫자음 인식율은 84.22%이다.

  • PDF