The Transactions of the Korea Information Processing Society
/
v.6
no.5
/
pp.1189-1202
/
1999
As compared with VOD data, NOD article data has the following characteristics: it is created at any time, has a short life cycle, is selected as not one article but several articles by a user, and has high access locality in time. Because of these intrinsic features, user access patterns of NOD article data are different from those of VOD. Thus, building NOD system using the existing techniques of VOD system leads to poor performance. In this paper, we analysis the log file of a currently running electronic newspaper, show that the popularity distribution of NOD articles is different from Zipf distribution of VOD data, and suggest a new popularity model of NOD article data MS-Zipf(Multi-Selection Zipf) distribution and its approximate solution. Also we present a life cycle model of NOD article data, which shows changes of popularity over time. Using this life cycle model, we develop LLBF (Largest Life-cycle Based Frequency) prefetching algorithm and analysis he performance by simulation. The developed LLBF algorithm supports the similar level in hit-ratio to the other prefetching algorithms such as LRU(Least Recently Used) etc, while decreasing the number of data replacement in article prefetching and reducing the overhead of the prefetching in system performance. Using the accurate user access patterns of NOD article data, we could analysis correctly the performance of NOD server system and develop the efficient policies in the implementation of NOD server system.
The Transactions of the Korea Information Processing Society
/
v.2
no.6
/
pp.960-968
/
1995
In this paper we present a reordering scheme that could lead to efficient vectorization of the preconditioners for the large sparse linear systems arising from partial differential equations on the CRAY-2, This reordering scheme is a line version of the conventional red/black ordering. This reordering scheme, coupled with a variant of ILU(Incomplete LU) preconditioning, can overcome the poor rate of convergence of the conventional red/black reordering, if relatively large number of fill-ins were used. We substantiate our claim by conducting various experiments on the CRAY-2 machine. Also, the computation of the Frobenius norm of the error matrices agree with our claim.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.10B
/
pp.621-629
/
2007
In cognitive radio (CR) network, the channels are generally classified into either the unavailable channels that are occupied by incumbent users or the available channels that are not occupied. The conventional channel classification scheme may result in poor utilization of spectrum holes since it does not take the spatial relationship between CR node and incumbent users into consideration. In this paper, we propose an efficient channel management scheme for the centralized CR network to maximize the spectrum holes by overcoming the shortcomings of conventional scheme. In addition, we mathematically analyze the effectiveness of proposed scheme. Based on the proposed channel management scheme, we also propose the rendezvous algorithm, which can establish the control channels between base station and CR node under the dynamically changing spectrum environment.
Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.1
/
pp.165-184
/
2023
The ARX-based lightweight block cipher is widely used in resource-constrained IoT devices due to fast and simple operation of software and hardware platforms. However, there are three weaknesses to ARX-based lightweight block ciphers. Firstly, only half of the data can be changed in one round. Secondly, traditional ARX-based lightweight block ciphers are static structures, which provide limited security. Thirdly, it has poor diffusion when the initial plaintext and key are all 0 or all 1. This paper proposes a new dynamic ARX-based lightweight block cipher to overcome these weaknesses, called DABC. DABC can change all data in one round, which overcomes the first weakness. This paper combines the key and the generalized two-dimensional cat map to construct a dynamic permutation layer P1, which improves the uncertainty between different rounds of DABC. The non-linear component of the round function alternately uses NAND gate and AND gate to increase the complexity of the attack, which overcomes the third weakness. Meanwhile, this paper proposes the round-based architecture of DABC and conducted ASIC and FPGA implementation. The hardware results show that DABC has less hardware resource and high throughput. Finally, the safety evaluation results show that DABC has a good avalanche effect and security.
Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.
This paper proposes a conditional replenishment algorithm (CRA) to improve the visual quality (where spatial resolutions of the left and right views are mismatched) of a hybrid stereoscopic 3DTV that is based on the ATSC-M/H standard. So as to generate an enhanced view, the CRA is to choose the better substitute among a disparity-compensated view with high quality and a simply interpolated view. The CRA generates a disparity map that includes modes and disparity vectors as additional information. It also employs a quad-tree structure with variable block size by considering the spatial correlation of disparity vectors. In addition, it takes advantage of the disparity map used in a previous frame to keep the amount of additional information as small as possible. The simulation results show that the proposed CRA can successfully improve the peak signal-to-noise ratio of a poor-quality view and consequently have a positive effect on the subjective quality of the resulting 3D view.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.3
/
pp.762-777
/
2014
With the increasing usage of cloud applications such as MapReduce and social networking, the amount of data traffic in data center networks continues to grow. Moreover, these appli-cations follow the incast traffic pattern, where a large burst of traffic sent by a number of senders, accumulates simultaneously at the shallow-buffered data center switches. This causes severe packet losses. The currently deployed TCP is custom-tailored for the wide-area Internet. This causes cloud applications to suffer long completion times towing to the packet losses, and hence, results in a poor quality of service. An Explicit Congestion Notification (ECN)-based approach is an attractive solution that conservatively adjusts to the network congestion in advance. This legacy approach, however, lacks scalability in terms of the number of flows. In this paper, we reveal the primary cause of the scalability issue through analysis, and propose a new congestion-control algorithm called FaST. FaST employs a novel, virtual congestion window to conduct fine-grained congestion control that results in improved scalability. Fur-thermore, FaST is easy to deploy since it requires only a few software modifications at the server-side. Through ns-3 simulations, we show that FaST improves the scalability of data center networks compared with the existing approaches.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.9
/
pp.3885-3906
/
2020
Hybrid fuzzing which combines fuzzing and concolic execution, has proved its ability to achieve higher code coverage and therefore find more bugs. However, current hybrid fuzzers usually suffer from inefficiency and poor scalability when applied to complex, real-world program testing. We observed that the performance bottleneck is the inefficient cooperation between the fuzzer and concolic executor and the slow symbolic emulation. In this paper, we propose a novel solution named EPfuzzer to improve hybrid fuzzing. EPfuzzer implements two key ideas: 1) only the hardest-to-reach branch will be prioritized for concolic execution to avoid generating uninteresting inputs; and 2) only input bytes relevant to the target branch to be flipped will be symbolized to reduce the overhead of the symbolic emulation. With these optimizations, EPfuzzer can be efficiently targeted to the hardest-to-reach branch. We evaluated EPfuzzer with three sets of programs: five real-world applications and two popular benchmarks (LAVA-M and the Google Fuzzer Test Suite). The evaluation results showed that EPfuzzer was much more efficient and scalable than the state-of-the-art concolic execution engine (QSYM). EPfuzzer was able to find more bugs and achieve better code coverage. In addition, we discovered seven previously unknown security bugs in five real-world programs and reported them to the vendors.
Journal of Information Technology Applications and Management
/
v.11
no.4
/
pp.181-208
/
2004
By the developing of Internet. the environments of the company have rapidly been changed. Especially. managers in the Internet shoppingmall have been try to provide excellent e-Services to their customers. e-Service i~ defined comprised of all interactive services that are delivered on the Internet uSing advanced telecommunications. information, and multimedia technologies. but according to study of e-Satisfy. com[2000]. customer service through internet is still neither effective nor efficient and poor service will impact on company's profit but excellent service can improve their value and quality of the service or product. In order to customer-oriented e-Services. this study suggested the QFD linked with e-Service quality model for the Internet shoppingmall service system. which can help determine design characteristics being relevant to customer's e-Service quality requirements. this hybrid model have two stages. In the first stage. we do measure service quality and find priorities of service quality attribute by purchase process. and in the second stage. on the basis of priority of e-Service quality attributes, we find design characteristics to maximize customer satisfaction. From this study, we provide internet shoppingmall managers with the implications for improvement of service quality, measuring quality of e-service, providing design characteristics for customer-oriented service quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.