• 제목/요약/키워드: the East China Sea

검색결과 666건 처리시간 0.022초

Paleoenvironmental Changes in the Northern East China Sea and the Yellow Sea During the Last 60 ka

  • Nam, Seung-Il;Chang, Jeong-Hae;Yoo, Dong-Geun
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.165-165
    • /
    • 2003
  • A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.

  • PDF

어군의 음향학적 형태 및 분포특성과 어종식별에 관한 연구 1.한국 연근해 멸치어군의 형태 및 분포특성과 종식별 실험 (Study on the Acoustic Behaviour Pattern of Fish Shool and Species Identification 1. Shoal Behaviour pattern of anchovy (Engraulis japonicus) in Korean waters and Species Identification Test.)

  • 김장근
    • 수산해양기술연구
    • /
    • 제34권1호
    • /
    • pp.52-61
    • /
    • 1998
  • We studied behaviour pattern of anchovy (Engraulis japonicus) shoal by a method of shoal echo integration and tested species identification by a method of artificial neural network using the acoustic data collected in the East China Sea in March 1994 and in the southern coastal waters of the East Sea of Korea in March 1995. Between areas, frequency distribution of 10 shoal descriptors was different, which showed characteristics of shoal behaviour in size, bathymetric position and acoustic strength. The range and mean of shoal size distribution in length and height was wider and bigger in the southern coastal waters of the East Sea than in the East China Sea. Relative shoal size of China Sea. Fractal dimension of shoal was almost same in both areas. Mean volume reverbration index of shoal was 3 dB higher in the southern coastal waters of the East Sea than in the East China Sea. The depth layer of shoal distribution was related to bottom depth in the southern coastal waters of the East Sea, while it was between near surface and central layer in the East China Sea. Principal component analysis of shoal descriptors showed the correlation between shoal size and acoustic strength which was higher in the southern coastal waters of the East Sea, than in the East China Sea. Correlation was also found among the bathymetric positions of shoal to some degree higher in the southern coastal waters of the East Sea than in the East China Sea. The anchovy shoal of two areas was identified by artificial neural network. The contribution factor index (Cio) of the shoal descriptors between two areas were almost identical feature. The shoal volume reverberation index (Rv) was showed the highest contribution to the species identification, while shoal length and shoal height showed relatively high negative contribution to the species identification.

  • PDF

Distribution of Suspended Particulate Matters in the East China Sea, Southern Yellow Sea and South Sea of Korea During the Winter Season

  • Choi, Jin-Yong;Kim, Seok-Yun;Kang, Hyo-Jin
    • Journal of the korean society of oceanography
    • /
    • 제39권4호
    • /
    • pp.212-221
    • /
    • 2004
  • Concentrations of suspended particulate matters (SPM) and their distribution patterns were monitored three times in the East China Sea during the winter season in 1998 and 1999. SPM concentrations showed significant temporal variations controlled by the atmospheric conditions and sea states. In coastal area, SPM values were about 10-20 mg/l in fair weather conditions, but exceeded 100mg/l during the storm periods. Turbid waters were distributed widespread in the continental shelf of the East China Sea and the coastal area of the Korean Peninsula, and these two areas were connected along a NE-SW direction. The distribution patterns of turbid waters were interpreted as representing the transport behavior of suspended matter. Although the primary source of inner shelf mud deposits of Korea seems to be the Korean Peninsula, contribution from the East China Sea to the coastal area of Korea increases especially during the winter season.

황해 중앙부와 동중국해 북부 해역에서의 대형 독성 노무라입깃해파리의 개체군 특성 연구 (Population Characteristics of the Venomous Giant Jellyfish, Nemopilema nomurai, found in the Yellow and Northern East China Seas)

  • 장수정;기장서
    • 한국환경과학회지
    • /
    • 제33권1호
    • /
    • pp.87-95
    • /
    • 2024
  • The giant jellyfish, Nemopilema nomurai, is an endemic species found in Northeast Asian waters and their population structures, such as size and genetics, and their environmental characteristics were investigated. N. nomurai was obtained from the Yellow and Northern East China Seas during the summers of 2006, 2007, and 2009. In the northern Yellow Sea, small-sized jellyfish were found to be dominant and towards the southern seas, the size of the jellyfish increased. In the northern East China Sea, only one mode of jellyfish was found in May, and the number of modes increased up-to five in July. However, at the center of the Yellow Sea, one or two modes were found in July, 2007. Thus, different jellyfish populations were present in the northern East China Sea and the Yellow Sea. However, based on first appearance and a cohort analysis using the bell diameter, the jellyfish population in the northern Yellow Sea might be recognized as a distinct group that differed from those found in the northern East China Sea. Furthermore, mitochondrial DNA sequences (cytochrome c oxidase subunit I) of N. nomurai were, determined and compared with genetic structures obtained from jellyfish in the Yellow Sea. The genetic diversity of N. nomurai was highest in the regions around the northern East China Sea and at the center of the Yellow Sea and was the lowest around the northern Yellow Sea. Thus, N. nomurai populations in the Yellow Sea and northern East China Sea might be different concerning their seeding places.

A Seasonal Circulation in the East China Sea and the Yellow Sea and its Possible Cause

  • Oh, Kyung-Hee;Pang, Ig-Chan
    • Journal of the korean society of oceanography
    • /
    • 제35권4호
    • /
    • pp.161-169
    • /
    • 2000
  • A seasonal circulation in the East China Sea and the Yellow Sea and its possible cause have been studied with CSK data during 1965-1989. Water mass distributions are clear in winter, but not in summer because the upper layer waters are quite influenced by atmosphere. To solve the problem, a water mass analysis by mixing ratio is used for the lower layer waters. The results show that the distribution of Tsushima Warm Current Water expands to the Yellow Sea in winter and retreats to the East China Sea in summer. It means that there is a very slow seasonal circulation between the East China Sea and the Yellow Sea: Tsushima Warm Current Water flows into the Yellow Sea in winter and coastal water flows out of the Yellow Sea in summer. By the circulation, the front between Tsushima Warm Current Water and coastal water moves toward the shelf break in summer so that the flow is faster in the deeper region. The process eventually makes the transport in the Korea Strait increase. The Kuroshio does not seem to influence the process. A possible mechanism of the process is the seasonal change of sea surface slope due to different local effects of surface heating and diluting between the East China Sea and the Yellow Sea.

  • PDF

Ocean Response to Typhoon Rusa in the South Sea of Korea and in the East China Sea

  • Lee, Dong-Kyu;Niiler, Peter
    • Journal of the korean society of oceanography
    • /
    • 제38권2호
    • /
    • pp.60-67
    • /
    • 2003
  • Typhoon Rusa passed over the East China Sea and crossed over the Korea Peninsula on August 31, 2002. The core of the typhoon passed directly over a data buoy mooring site at ($127^{\circ}45'E,\;34^{\circ}25'\;N$) and several ARGOS-tracked drifters capable of measuring salinity. Peak hourly mean wind speed reached 28 m/s at the mooring site and wind pattern in the East China Sea changed from southerly wind to northwesterly wind after the typhoon passage. Two or three days before the typhoon tile drifter displacement changed significantly and the region-wide circulation pattern changed from a northeastward current to a westward current one week after the typhoon had passed. The surface water in the East China Sea was cooled to about $4^{\circ}C$ under the typhoon core and a general cooling occurred in most of the East China Sea with the exception of the Chinese coast. The salinity as observed by the drifters in the East China Sea increased about 2 psu but the near-shore water along the Korean coast observed by the mooring was freshened about 3 psu. The freshening of near-shore water was caused by an intrusion of off-shore water rather than local freshening by typhoon precipitation.

Aquarius 염분 관측 위성에 의한 동해 저염수의 형성과 유동 연구 (Formation and Distribution of Low Salinity Water in East Sea Observed from the Aquarius Satellite)

  • 이동규
    • 한국수산과학회지
    • /
    • 제51권2호
    • /
    • pp.187-198
    • /
    • 2018
  • The monthly salinity maps from Aquarius satellite covering the entire East Sea were produced to analyze the low-salinity water appearing in fall every year. The low-salinity water in the northern East Sea began to appear in May-June, spreading southward along the coast and eastward north of the subpolar front. Low-salinity water from the East China Sea entered the East Sea through the Korea Strait from July to September and was mixed with low-salinity water from the northern East Sea in the Ulleung Basin. The strength of the low-salinity water from the East China Sea was dependent on the strength of the southerly wind of the East China Sea in July-August. The salinity reaches a minimum in September with a distribution parallel to the latitude of $37.5^{\circ}N$. In October, low salinity water is distributed along the mean current path and subpolar front and the entire East Sea is covered with the low salinity water in November. Water with salinity larger than 34 psu starts to flow into the East Sea through the Korea Strait in December and it expands gradually northward up to the subpolar front in January- February.

Dinoflagellate Cyst Assemblages in the Surface Sediments from the Northwestern East China Sea

  • Cho Hyun-Jin;Matsuoka Kazumi;Lee Joon-Baek;Moon Chang-Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제4권3호
    • /
    • pp.120-129
    • /
    • 2001
  • Thirty-six dinoflagellate cysts, representing 15 genera were identified in the surface sediments obtained from the northwestern East China Sea. Three cyst morphotypes found in this survey have not previously been described in the East China Sea and adjacent waters: Seleno­pemphix sp. 2, Selenopemphix sp. 3 and Trinovantedinium sp. 1. In the northwestern East China Sea, Operculodinium centrocarpum, Spiniferites bulloideus and ellipsoidal cysts of Alexandrium were commonly observed. Moreover, it was recognized that the ellipsoidal cysts of Alexandrium, whose motile cells of A tamarense and/or A catenella are responsible to paralytic shellfish poisoning, distributed not only restricted to the coastal areas but also to the offshore stations far from the Changjiang River mouth.

  • PDF

An Analysis on Observational Surface and upper layer Current in the Yellow Sea and the East China Sea

  • Kui, Lin;Binghuo;Tang, Yuxiang
    • Journal of the korean society of oceanography
    • /
    • 제37권3호
    • /
    • pp.187-195
    • /
    • 2002
  • The characteristics of surface circulation in the Yellow Sea and the East China Sea are discussed by analyzing a great deal of current data observed by 142 sets of mooring buoy and 58 sets of drifters trajectories collected in the Yellow Sea and the East China Sea through domestic and abroad measurements. Some major features are demonstrated as bellow: 1) Tsushima Warm Current flows away from the Kuroshio and has multiple sources in warm half year and comes only from Kuroshio surface water in cold half year. 2) Taiwan Warm Current comes mainly from the Taiwan Strait Water in warm half year and comes from the intruded Kuroshio surface water and branches near 27N in cold half year. 3) The Changjiang Diluted Water turns towards Cheju Island in summer and flows southward along the coastal line in winter. 4) The study sea area is an eddy developing area, especially in the southern area of Cheju Island and northern area of Taiwan.

중·일 어업협정에 따른 양국 어업질서의 이행 실태 진단 (Research on the Implementation of the Bilateral Fisheries Order in the East China Sea after Establishing the China-Japan Fisheries Agreement)

  • 김대영
    • 수산해양교육연구
    • /
    • 제27권4호
    • /
    • pp.1053-1062
    • /
    • 2015
  • This research assesses the implementation of the bilateral fisheries order of the China-Japan fisheries agreement. After establishment of UNCLOS, the China-Japanese fisheries agreement has played as a basis for the fisheries order in the East China Sea. The China-Japanese fisheries agreement intends that the fisheries industries in China and Japan can utilize the renewable natural resources in the East China Sea. As the EEZ of China overlaps with that of Japanese in the East China Sea, the two countries established the China-Japan Provisional Measure Zone and Middle Zone in the Sea. Even though the three coastal States (e.g. Korea, China, and Japan) in the East China Sea are involved in managing these zones, there has been little effort to coordinate each county's management. Additionally, the Taiwan-Japan fisheries agreement, which is for the area of N $27^{\circ}$, has made costal States to establish and implement united measures to conduct effective fisheries management. Regarding access to the joint fishing zone in EEZ, Chinese fisheries regulations have been enforced in the zone because the fishing capacity of China exceeds all of other countries, reducing the number of fishing licenses and catch quotas. It turned out that a nation that has authority over fisheries resources tends to establish specific conditions of fishing operations to maximize its national interest. In the China-Japan Provisional Measure Zone, Chinese and Japanese authorities have introduced united measures to manage fisheries resources. However, in the Middle Zone between China and Japan, there is no regulation on fishing; both countries' fishing vessels can have free access to the zone. Thus, it is recommended that one should introduce an international fisheries management regime for the Middle Zone. In this regard, Korea should play a leading role in establishing the international management regime because Korea has middle position in terms of geographical standpoint, the degree of dependence on commercial fishing, and its fishing capacity.