• 제목/요약/키워드: the Amazon

검색결과 292건 처리시간 0.018초

사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법 (Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering)

  • 타이쎄타;하인애;조근식
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.1-20
    • /
    • 2013
  • 소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.

온라인 서비스 품질이 고객만족 및 충성의도에 미치는 영향 -항공권 예약.발권 웹사이트를 중심으로- (The Effects of Online Service Quality on Consumer Satisfaction and Loyalty Intention -About Booking and Issuing Air Tickets on Website-)

  • 박종기;고도은;이승창
    • 한국유통학회지:유통연구
    • /
    • 제15권3호
    • /
    • pp.71-110
    • /
    • 2010
  • 본 연구에서는 항공권 예약 발권 웹사이트의 서비스 품질을 측정 뿐만 아니라 서비스 회복도 측정하고자 하였다. 또한 서비스 품질과 서비스 회복이 고객만족 및 충성의도에 미치는 영향관계를 실증하고자 하였다. 온라인 서비스 품질과 온라인 서비스 회복의 측정을 위해 Parasuraman, Zeithaml, & Malhotra(2005)가 개발한 E-S-QUAL과 E-RecS-QUAL을 사용했으며, 했다. E-S-QUAL은 온라인 서비스 품질을 측정하는 도구로써, 효율성, 시스템 이용가능성, 이행성, 프라이버시의 4개 차원 22개 항목으로 구성된다. E-RecS-QUAL은 온라인 서비스 회복을 측정하는 도구로써, 반응, 보상, 접촉의 3개 차원 11개 항목으로 구성된다. 실증분석을 위한 설문조사는 항공사나 여행사의 웹사이트를 통해 국내 외 항공권을 구입해 본 경험이 있는 소비자를 대상으로 실시하였는데, 총 400부가 회수되었고, 이 중 342부를 최종분석에 사용하였다. 실증분석을 위해 AMOS 7.0과 SPSS 15.0을 사용하였다. 먼저, SPSS 15.0을 사용하여, 요인점수를 이용한 회귀분석으로 가설검증을 한 결과, <가설 I-1, 2, 3, 4, II-1, 2, 3, III-1, IV-1>이 전부 채택되었다. 온라인 서비스 품질과 온라인 서비스 회복의 각 차원은 모두 전반적인 서비스 품질에 유의한 영향을 보였고, 전반적인 서비스 품질은 고객만족에 유의한 영향을 미쳤다. 마지막으로 고객만족 역시 충성의도에 유의한 영향을 미치는 것으로 확인되었다. 한편 AMOS 7.0을 사용하여 모형 분석을 하였는데, 모형의 적합도는 가설검증을 하기에 합당한 수치가 나왔다. 이를 토대로 가설검증을 한 결과, <가설 I-1, 3, II-1, 3, III-1, IV-1>은 채택되었고, <가설 I-2, 4, II-2>는 기각되었다. 이 결과는 Parasuraman et al.(2005)이 주장한 것처럼 E-S-QUAL을 나타내는 데는 요인점수를 이용한 회귀분석이 더 적합하다는 것을 보여주는 것이라고 판단된다. 이를 토대로 본 연구의 시사점을 정리하였다.

  • PDF