• Title/Summary/Keyword: the AIR model

Search Result 5,903, Processing Time 0.037 seconds

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.445-452
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

  • PDF

Development of Simulation Environment for Proximity Flight Using Simulink and X-Plane (Simulink와 X-Plane을 이용한 모의 근접비행 시뮬레이션 환경 개발연구)

  • Lee, Sanghoon;Park, Chanhwi;Park, Younghoo;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.465-472
    • /
    • 2021
  • Prior to the actual flight test of the separation-reintegration situation of fixed-wing mother and child UAVs in the air, it is necessary to verify the flight control system of child UAV through simulations. In this paper, we build a simulation environment for the development of a child UAV flight control system in a lab environment based on the wake turbulence of X-Plane. To this end, the aerodynamics analysis of child UAV was performed, and Simulink was used to simulate aircraft, and X-Plane was utilized to implement visualization, wind, gusts, and mother UAV movements. The simulation environment built by performing simulated proximity flights was verified by applying the guidance and control algorithm to the child UAV model within Simulink. Furthermore, the flight results confirm the area in which the child UAV can safely fly from the rear of the mother UAV.

Determinants of Preventive Behavior Intention to the Particulate Matter: An Application of the Expansion of Health Belief Model (미세먼지 예방행동의도 결정요인: 건강신념모델 확장을 중심으로)

  • Chung, Donghun
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.471-479
    • /
    • 2019
  • The purpose of this study was to investigate the determinants of preventive behavior intention to the particulate matter. The results based on the survey of 280 university students showed that the perceived susceptibility and barriers to the particulate matter do not have statistically significant effects on the preventive behavior intention. However, perceived severity and benefits, subjective norm, and self-efficacy to the particulate matter had statistically significant positive effects on the preventive behavior intention. The results of this study suggested that communication strategies to increase perceived severity and benefits, subjective norm and self-efficacy should be required to improve the degree of preventive behavior intention to the particulate matter of college students. It is expected to contribute explaining preventive actions against environmental hazards such as air pollution in the future.

Development of Numerical Analysis Model for the Calculation of Thermal Conductivity of Thermo-syphon (열 사이펀의 열전도율 산정을 위한 수치해석 모델 개발)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The areas consisting of frost susceptible soils in cold regions, such as the Arctic area, have problems of frost heave and thaw settlement due to the seasonal air temperature changes and internal temperature of installed structures. Ground stabilization methods for preventing frost heave and thaw settlement of frost susceptible soils include trenching, backfilling and thermo-syphon. The thermo-syphon is the method in which refrigerant can control the ground temperature by transferring the ground temperature to atmosphere in the from of two-phase flow through the heat circulation of the internal refrigerant. This numerical study applied the function of these thermo-syphon as the boundary condition through user-subroutine coding inside ABAQUS and compared and analyzed the temperature results of laboratory experiments.

A Numerical Method for Analysis of the Sound and Vibration of Waveguides Coupled with External Fluid (외부 유체와 연성된 도파관의 진동 및 소음 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.448-457
    • /
    • 2010
  • Vibrations and wave propagations in waveguide structures can be analysed efficiently by using waveguide finite element (WFE) method. The WFE method only models the 2-dimensional cross-section of the waveguide with finite elements so that the size of the model and computing time are much less than those of the 3-dimensional FE models. For cylindrical shells or pipes which have simple cross-sections, the external coupling with fluids can be treated theoretically. For waveguides of complex cross-sectional geometries, however, numerical methods are required to deal with external fluids. In this numerical approach, the external fluid is modelled by the boundary elements (BEs) and connected to WFEs. In order to validate this WFE/BE method, a pipe submerged in water is considered in this study. The dispersion diagrams and point mobilities of the pipe simulated are compared to those that theoretically obtained. Also the acoustic powers radiated from the pipe are predicted and compared in both cases of air and water as an external medium.

Estimation of Aerosol Radiative Forcing by AGCM (대기 대순환 모형을 이용한 에어로졸의 복사 강제 추정)

  • Hong, Sung-Chul;Chung, Il-Ung;Kim, Hyung-Jin;Lee, Kyu-Tae;Lee, Jae-Bum
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.623-631
    • /
    • 2008
  • Many recent studies have concentrated upon the radiative effects of atmospheric aerosols. Though their scattering and absorption of radiation, aerosols can also induce some other important environment effects. In this study, new radiation code and aerosol data within Atmosphere General Circulation Model (AGCM) is used to assess the aerosol radiative forcing and to analyze relative climate effects. The new Kangnung National University AGCM Stratospheric-15 (KNU AGCM ST15) was integrated by using two sets of radiative effect of aerosols: CTRL as not a radiative effect of aerosols and AERO as a radiative effect of aerosols. Two cases show the difference of net shortwave radiation budget at top-of-atmosphere (TOA) is found to be about $-3.4Wm^{-2}$, at the surface (SFC) is about $-5.6Wm^{-2}$. Consequently the mean atmospheric absorption due to aerosol layer in global is about $2.2Wm^{-2}$. This result confirms the existence of a negative forcing due to the direct effect of aerosols at the surface and TOA in global annual mean. In addition, it is found that cooling over at the surface air temperature due to radiative effect of aerosols is about $0.17^{\circ}C$. It is estimated that radiative forcing of the net upward longwave radiation taken as the indirect effect of aerosol is much smaller than that of the direct effect as there is about $0.2Wm^{-2}$ of positive forcing both at TOA and at SFC. From this study, It made an accurate estimation of considering effect of aerosols that is negative effect. This may slow the rate of projected global warming during the $21^{st}$ century.

Microstructure Evolution and Dielectric Characteristics of CaCu3Ti4O12 Ceramics with Sn-Substitution

  • Kim, Cheong-Han;Oh, Kyung-Sik;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.87-91
    • /
    • 2013
  • The doping effect of Sn on the microstructure evolution and dielectric properties was studied in $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals. Samples were produced by a conventional solid-state reaction method. Sintering was carried out at $1115^{\circ}C$ for 2-16 h in air. The dielectric constant and loss were examined at room temperature over a frequency range between $10^2$ and $10^6$ Hz. The microstructure was found to evolve into three stages. Addition of $SnO_2$ led to an increase in density and advanced formation of abnormal grains. The formation of coarse grains with a reduced thickness of the boundary brought about an enhanced dielectric constant and a lower dielectric loss below ~1 kHz. EDS data showed the Cu-rich phase along the grain boundary, which should contribute to the improved dielectric constant according to the internal barrier layer capacitor model. After all, $SnO_2$ was an effective dopant to elevate the dielectric characteristics of $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals as a promoter for abnormal grain growth.

Estimation of the Elasticity of Energy Demand and Performance of the Second Energy Tax Reform in Korea (수요탄력성 추정을 통한 2차 에너지 세제개편의 성과평가)

  • Kang, Man-Ok;Lee, Sang-Yong;Cho, Jangyul
    • Environmental and Resource Economics Review
    • /
    • v.17 no.3
    • /
    • pp.1-29
    • /
    • 2008
  • The goal of this study is to analyze the effects of the second energy tax reform of the transportation sector in Korea. For this purpose, we estimated the elasticities of energy demand(for gasoline, diesel and LPG) by using the ARDL(Auto-Regressive Distributed Lag) Model during the period of 1997 and 2005. We have the empirical results that the demand for diesel would decrease as much as of 382 million barrel per year and the demand for LPG would increase as much as of 20 million barrel per year since 2007. The second energy tax reform would also result in the decrease of 27,346 ton of air pollutants and 0.96 million ton of carbon dioxide per year. This shows that the second energy tax reform would have achieved its own policy goals by reducing energy demand and improving the quality of environment.

  • PDF

The Characteristics of Environmental Friendly Tourism in the South Pacific Islands: A Case Study of Ecotourism in Fiji Islands (남태평양제도의 환경친화적 관광특성 -피지(Fiji)의 생태관광을 사례로-)

  • Choe, Jae-Woo
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.1
    • /
    • pp.124-141
    • /
    • 2006
  • Fiji is referred to as the hub of the South Pacific as it lies on the major sea and air transport routes in the region. Tourism, the fastest growing industry within the global economy, is already well established within the country. This paper aims to explore the characteristics of ecotourism in Fiji Islands as a foreign area study. To achieve the objectives, this research carried out a literature review before taking several field surveys in Fiji Islands. Research areas are Raintree Lodge in Suva, Kula Ecopark near Sigatoka, Sigatoka Sand Dunes National Park, Nalesutale Fijian indigenous village near Nadi. Most of all facilities and ecotour programs are developed for environmental, economical and educational effects. The case studies of Fiji present a good model of how to succeed in ecotourism and conservation management to Korea. In addition, this research will provide effective regional policies for the environmental friendly tourism in Korea.

  • PDF

The Study of the Effects of Nonthermal Plasma-Photocatalyst combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine (스파크 점화기관 냉간 시동시 플라즈마 광촉매 복합장치에 의한 탄화수소 화합물 저감에 관한 실험적 연구)

  • Lee, Taek-Heon;Chun, Kwang-Min;Chun, Bae-Hyeock;Shin, Young-Gy
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.169-178
    • /
    • 2001
  • Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition. However the absolute value was locally a bit higher than those of base condition since the products was made from the dissociation and decomposition of highly branched paraffins by plasma-photocatalyst reactor. Olefinic components were highly decomposed by about 75%, due to these excellent decompositions of olefins which have relatively high MIR values, and the SR value was 1.87 that is 30% reduction from that of base condition, then, the photochemical reactivity was lowered.

  • PDF