• 제목/요약/키워드: the AIR model

Search Result 5,903, Processing Time 0.051 seconds

The potential cytotoxic effects of urban particle matter on olfaction

  • B.-Y. Kim;J.Y. Park;K.J. Cho;J.H. Bae
    • Journal of Rhinology
    • /
    • v.59 no.6
    • /
    • pp.528-537
    • /
    • 2021
  • Background: Urban particulate matter (UPM) in ambient air is implicated in a variety of human health issues worldwide, however, few studies exist on the effect of UPM on the olfactory system. This study aimed to identify the factors affecting the destruction of the olfactory system in a mouse model following UPM exposure. Methods: Mice were divided into: control and four UPM-exposed groups (200 ㎍ UPM at 1 and 2 weeks, and 400 ㎍ UPM at 1 and 2 weeks [standard reference material 1649b; average particle diameter 10.5 ㎛]). The olfactory neuroepithelium was harvested for histologic examination, gene ontology, quantitative real-time polymerase chain reaction, and western blotting. Results: Compared to the control group, olfactory marker protein, Olfr1507, ADCY3, and GNAL mRNA levels were lower, and S-100, CNPase, NGFRAP1, BDNF, and TACR3 mRNA levels were higher in the olfactory neuroepithelium of the UPM groups. Moderately positive correlation was present between the 1- and 2-week groups. After analyzing the 200 and 400 UPM groups separately, the strength of the association between the 200 UPM 1- and 2-week groups was moderately positive. No differences was present in the neuroepithelial inflammatory marker levels between the UPM and control groups. Conclusions: UPM could have cytotoxic effects on the olfactory epithelium. The exposure time and particular concentration of UPM exposure could affect the degree of destruction of the olfactory neuroepithelium. The olfactory regeneration mechanism could be related to the neurotrophic factors, olfactory ensheathing cell stimulation, and trigeminal nerve support.

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

Performance Test of A Reverse-Annular Type Combustor (TS2) for APU (보조동력장치용 환형 역류형 연소기 (TS2) 성능 시험)

  • Ko, Young-Sung;Han, Yeoung-Min;Lee, Kang-Yeop;Yang, Soo-Seok;Lee, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.805-810
    • /
    • 2002
  • Development of a small gas-turbine combustor for 100㎾ class APU(Auxiliary Power Unit) has been performed. This combustor is a reverse-annular type and has a tangential swiller in the liner head to improve the fuel/air mixing and flame stability. Three main and three pilot fuel injectors of the simplex pressure-swirl type are used. The performance target at the design condition includes a turbine inlet temperature of l170k, a combustion efficiency of 99%, a pattern factor of 30%, and an engine durability of 3000 hours. Under developing the combustor, we conducted the performance test of our first prototype(TS1) with some variants. As a result of the test, the performance targets of the combustor are satisfied except that the pattern factor is about 4% higher than the target value. Therefore, the second prototype(TS2) was redesigned and the performance test was conducted with the critical focus on the pattern factor and the exit mean temperature. We adopted TS2 four variants to check the improvement of the pattern factor. As a result, the pattern factors of several variants were satisfied with the performance target. Finally, the TS2A variant was chosen as a final combustor fur our APU model.

Evaluation of the CALPUFF Model Using Improved Meteorological Fields in Complex Terrain of East Sea Coast (동해안의 복잡지형에서 기상장 개선에 따른 CALPUFF 모델의 평가)

  • Lee, Chong-Bum;Kim, Jea-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.15-25
    • /
    • 2009
  • Donghae city is one of the most representative cement industrial city in Korea. The area is faced with the East Sea to the East and with high montane region of Tae-Back mountain range to the West. Many pollutant sources of air pollution are located near the coast, but the largest point sources of the region are located at the bottom of the mountain area in Donghae city. The local wind is highly affected by local topography and plays an important role in transport and dispersion of contaminants from the pollution sources. This study was designed to evaluate enhancement of MM5 predictions by using Four Dimensional Data Assimilation (FDDA), the SONDE data and the national meteorological station, data only. The alternative meteorological fields predicted with and without FDDA were used to simulate spatial and temporal variations of NOx in combined with Atmospheric Dispersion Models (CALPUFF). For the modeling domain, the alternative meteorological fields with 1.1 km spatial resolution were interpolated to the CALMET with 0.5 km resolution. The vertical layers set to have 35 and 12 layers for MM5 and CALPUFF, respectively. MM5 with the FDDA did not resulted in significant improvement of meteorological field prediction in Donghae region, which is primarily because of complex geography and wind scheme. The result of CALPUFF, however, showed reduction of uncertainty errors by using the interpolation scheme of the actual measurement data.

Analysis of the factors of dental hygiene plans influencing patients of the dental hygiene program based on dental hygiene process (치위생과정에 근거한 구강건강관리프로그램 대상자의 치위생계획의 영향요인 분석)

  • Kim, Yu-Rin
    • Journal of Korean society of Dental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.227-237
    • /
    • 2018
  • Objectives: This study aims to recognize the importance of dental hygiene process diagnosis of dental hygiene process which can comprehensively grasp the patient's problem and to use it as a basis for establishing the patient's preventive treatment plan. Methods: This study did survey to 443 patients who received treatment based on the oral health care program from a dental clinic in Busan from January 2015 to January 2017. Data analysis was performed using IBM SPSS Statistics (Version 21.0), and statistical significance level was set at ${\alpha}=0.05$. Binary logistic regression analysis was performed to the dental hygiene problems affecting the dental hygiene plan. Results: There were significant differences in dental hygiene problems between male and female respondents on various dental problems such as dental plaque deposition, attrition, stain, dental fear, possibility of jaw joint disorder, food pressing, possibility of malocclusion. There were also significant differences in dental hygiene plans between male and female respondents in air-Jet, non-smoking education, and sealant. The most common dental hygiene plan was scaling, The problem of stain showed that the scaling plan was 0.20 times less. The explanatory power of the model was 43.5%, and the Hosmer and Lemeshow tests were 0.345. Conclusions: Therefore, if we continue to study the factors affecting the dental hygiene problems and the plan, we can reduce the burden of the dental hygienists applying the dental hygiene process in the dental clinic. And, it is expected that the oral health care program using the dental hygiene process will spread to the dental clinic as an excellent oral preventive program.

Deformation Characteristics and Sealing Performance of Metallic O-rings for a Reactor Pressure Vessel

  • Shen, Mingxue;Peng, Xudong;Xie, Linjun;Meng, Xiangkai;Li, Xinggen
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.533-544
    • /
    • 2016
  • This paper provides a reference to determine the seal performance of metallic O-rings for a reactor pressure vessel (RPV). A nonlinear elastic-plastic model of an O-ring was constructed by the finite element method to analyze its intrinsic properties. It is also validated by experiments on scaled samples. The effects of the compression ratio, the geometrical parameters of the O-ring, and the structure parameters of the groove on the flange are discussed in detail. The results showed that the numerical analysis of the O-ring agrees well with the experimental data, the compression ratio has an important role in the distribution and magnitude of contact stress, and a suitable gap between the sidewall and groove can improve the sealing capability of the O-ring. After the optimization of the sealing structure, some key parameters of the O-ring (i.e., compression ratio, cross-section diameter, wall thickness, sidewall gap) have been recommended for application in megakilowatt class nuclear power plants. Furthermore, air tightness and thermal cycling tests were performed to verify the rationality of the finite element method and to reliably evaluate the sealing performance of a RPV.

Computational Study on the Application of Porous Media to Fluid Flow in Exhaust Gas Scrubbers (배기가스 세정장치내 유체 유동에 대한 다공성 매질 적용 기반의 전산해석적 연구)

  • Hong, Jin-pyo;Yoon, Sang-hwan;Yoon, Hyeon-kyu;Kim, Lae-sung;An, Jun-tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Exhaust gases emitted from internal combustion engines contain nitrogen oxides (NOx) and sulfur oxides (SOx), which are major air pollutants causing acid rain, respiratory diseases, and photochemical smog. As a countermeasure, scrubber systems are being studied extensively. In this study, the pressure drop characteristics were analyzed by changing the exhaust gas inflow velocity using a scrubber for a 700 kW engine as a model. In addition, the fluid flow inside the scrubber and the behavioral characteristics of the droplets were studied using CFD, and the design compatibility of the cleaning device was verified. Flow analysis was performed using inertial and viscous resistances by applying porous media to the complex shape of the scrubber. The speed of the exhaust passing through the outlet nozzle from the inlet was determined through the droplet behavior analysis by spraying, and the flow characteristics for the pressure drop were studied. In addition, it was confirmed through computational analysis whether there was a stagnation section in the exhaust gas flow in the scrubber or the sprayed droplets were in good contact with the exhaust gas.

Development of Map-Based Engine Control Logic for DME Fuel (MAP 기반 DME용 엔진 제어로직 개발)

  • Park, Young-Kug;Chung, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3127-3134
    • /
    • 2013
  • This paper presents the verified results from the examination of the control algorithm, logic composition, and vehicle condition of the engine that has been adapted for DME fuel. It introduces the development process of the control structure and the logic control based on control map and auto-code generation, and finally verifies the reliability and performance of the overall control. The control structure largely consists of the injection control part that implements driver demand into an engine net torque and the air control system part that satisfies characteristics of exhaust gas and power performance. The control logic is designed with feedforward and feedback control for each of its control functions for an enhanced response. Moreover, the control map of the feedforward controller is created by the use of an engine model created by test data of mass product diesel engine, and it was subsequently calibrated in the test process of the engine and vehicle state. A test mode was completed by attaching the developed controller to the vehicle, and a reduction in gas emission is confirmed by the calibration of EGR, VGT, and injection times.

Study on Convergence Technique through Flow Analysis at the Flexible Joint of the Pipe Laying (배관의 신축이음에서의 유동해석을 통한 융합기술연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.3
    • /
    • pp.13-18
    • /
    • 2015
  • This paper is the study on the safe design of joint controling the pressure and temperature by connecting between pipes laying with the flexible joint. This study aims at decreasing the excessive pressure applied in the pipe and preventing the accident occurrence in order to solve the pipe damage by extraction and contraction due to the pressure of open air and transport gas. The flow properties of each model are investigated through the simulation analysis by applying three kinds of the flexible joints. When transport gas passes the flexible joint, the flow characteristics of heat, pressure and velocity at pipe laying are analyzed. It is thought to be contributed to the safe design due to the shape of the flexible joint by using the result of this study. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

A Study on Thermal Management of Stack Supply Gas of Solid Oxide Fuel Cell System for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 시스템의 스택 공급 가스의 열관리 문제에 관한 연구)

  • Park, Sang-Kyun;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.765-772
    • /
    • 2011
  • In this research, the fuel cell system model capable of generating codes in real time was developed to construct of a HIL (Hardware-In-the-Loop) for a SOFC-powered ship. Moreover, the effects of the distribution of the exhaust gas flow rates in a stack, the flow rates of fuels and temperature of air supplied on the temperature characteristics of fuels supplied to the cathode and the anode, the output power of the stack and system efficiency are examined to minimize the temperature difference between fuels supplied to the stack used in a 500kW SOFC system using methane as a fuel. As a result, the temperatures of fuels supplied to the cathode and the anode maintain at 830K when the opening factor of three-way valve located at outlet of turbine is 0.839. Also the process for optimization of methane flow rate considering the fuel cell stack and system efficiency is required to increase the temperatures of fuels supplied to the stack.