• Title/Summary/Keyword: the AIR model

Search Result 5,901, Processing Time 0.035 seconds

The Development Strategy of the Future Aviation Weather Service Technologies and Realization of NARAE-Weather (미래 항공기상서비스 기술개발 전략과 NARAE-Weather 실현)

  • Park, Y.M.;Kang, T.G.;Ku, B.J.;Kim, S.I.;Kim, S.C.;Ahn, D.S.;Lee, J.H.;Jung, I.G.;Ryu, J.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.48-60
    • /
    • 2021
  • Following the global air-traffic market growth outlook, urgency of technical development is needed in responding to changes in the international air-traffic management paradigm and to prepare technology securing and spreading strategies, which are consistent with systematic aviation weather service policies and evolution direction. Although air traffic has decreased significantly due to COVID-19, normalcy is expected from 2024, as announced by IATA. According to the future air transportation market outlook and development trends of related technologies, Korea has established and implementing the next-generation air transportation system construction plan(NARAE) to secure international competitiveness and leadership in the future. Therefore, this paper describes the technical, economic background and requirements of numerical model-based aviation weather R&D projects for successful implementation of domestic NARAE plans and providing aviation safety and air traffic service efficiency. Furthermore, we proposed numerical-model-based technology development content, strategies and detailed load-map.

Development of a Grid-Based Daily Land Surface Temperature Prediction Model considering the Effect of Mean Air Temperature and Vegetation (평균기온과 식생의 영향을 고려한 격자기반 일 지표토양온도 예측 모형 개발)

  • Choi, Chihyun;Choi, Daegyu;Choi, Hyun Il;Kim, Kyunghyun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.137-147
    • /
    • 2012
  • Land surface temperature in ecohydrology is a variable that links surface structure to soil processes and yet its spatial prediction across landscapes with variable surface structure is poorly understood. And there are an insufficient number of soil temperature monitoring stations. In this study, a grid-based land surface temperature prediction model is proposed. Target sites are Andong and Namgang dam region. The proposed model is run in the following way. At first, geo-referenced site specific air temperatures are estimated using a kriging technique from data collected from 60 point weather stations. Then surface soil temperature is computed from the estimated geo-referenced site-specific air temperature and normalized difference vegetation index. After the model is calibrated with data collected from observed remote-sensed soil temperature, a soil temperature map is prepared based on the predictions of the model for each geo-referenced site. The daily and monthly simulated soil temperature shows that the proposed model is useful for reproducing observed soil temperature. Soil temperatures at 30 and 50 cm of soil depth are also well simulated.

Energy Saving Potential and Indoor Air Quality Benefits of Multiple Zone Dedicated Outdoor Air System

  • Lee, Soo-Jin;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to evaluate the indoor air quality (IAQ) and energy benefits of a dedicated outdoor air system (DOAS) and compare them with a conventional variable air volume (VAV) system. The DOAS is a decoupled system that supplies only outdoor air, while reducing its consumption using an enthalpy wheel. The VAV system supplies air that is mixed outdoor and transferred indoor. The VAV has the issue of unbalanced ventilation in each room in multiple zones because it supplies mixing air. The DOAS does not have this problem because it supplies only outdoor air. That is, the DOAS is a 100% outdoor air system and the VAV is an air conditioning system. The transient simulations of carbon dioxide concentration and energy consumption were performed using a MATLAB program based on the thermal loads from the model predicted by the TRNSYS 18 program. The results indicated that when the air volume is large, such as in summer, the distribution of air is not appropriate in the VAV system. The DOAS however, supplies the outdoor air stably. Moreover, in terms of annual primary energy consumption, the DOAS consumed approximately 40% less energy than the VAV system.

Numerical Model Development of a Microchannel Condenser for Mobile Air-Conditioning Systems (자동차용 에어컨의 마이크로채널 응축기의 수치적 모델 개발)

  • ISHAQUE, SHEHRYAR;ULLAH, NAVEED;CHOI, JUN-HO;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.430-436
    • /
    • 2022
  • This paper presents the numerical model development of a microchannel heat exchanger in mobile air-conditioning and heat pump applications. The model has been developed based on the effectiveness-NTU method using a segment-by-segment modeling approach. State-of-art correlations are used for refrigerant- and air-side heat transfer coefficients and pressure drops. The calculated heat condenser capacities are in good agreement with experimental data, with an average difference of 1.86%. The current model can be used for microchannel condenser simulations under various operating conditions. It is anticipated to improve productivity in designing and optimizing microchannel heat exchangers with folded louver fin geometry.

A Study on the Improvement of Accuracy in Mapping the Distribution of the Emission Volume of Air Pollution Using GIS (GIS를 이용한 대기오염 배출량 분포도의 정확도 향상에 관한 연구)

  • 최진무
    • Spatial Information Research
    • /
    • v.6 no.1
    • /
    • pp.65-76
    • /
    • 1998
  • Air contaminant density must be inferred exactly to manage air pollution. Each land use of air pollution source is duplicated in the existing air contaminant distribution because the resolution of the land use map is low. The purpose of this study is to understand how the land use map is used to determine effectively in the distribution calculation of the emission volume and the inference of air contaminant density, as it is made in a high resolution. The major findings are as follows : In this study, as to making a high resolution($28.5m{\times}28.5m$) map of land use with GIS, each air pollution source is not duplicated spatially and land use can be reflected effectively. In Seoul, each air contaminant density was inferred (using a TCM-2 model) with the existing distribution map of emission volume, whose resolution is $1km{\times}1km$, and the new distribution map of emission volume, whose resolution is $28.5km{\times}28.5km$. According to the result, the inference value of the new distribution map was more similar to the actual value of an automatic survey network.

  • PDF

Anti-air Unit Learning Model Based on Multi-agent System Using Neural Network (신경망을 이용한 멀티 에이전트 기반 대공방어 단위 학습모형)

  • Choi, Myung-Jin;Lee, Sang-Heon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.49-57
    • /
    • 2008
  • In this paper, we suggested a methodology that can be used by an agent to learn models of other agents in a multi-agent system. To construct these model, we used influence diagram as a modeling tool. We present a method for learning models of the other agents at the decision nodes, value nodes, and chance nodes in influence diagram. We concentrated on learning of the other agents at the value node by using neural network learning technique. Furthermore, we treated anti-air units in anti-air defense domain as agents in multi. agent system.

A Study on the Prediction of Power Consumption in the Air-Conditioning System by Using the Gaussian Process (정규 확률과정을 사용한 공조 시스템의 전력 소모량 예측에 관한 연구)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.64-72
    • /
    • 2016
  • In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon's sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.

Preliminary Research to Support Air Quality Management Policies for Basic Local Governments in Gyeonggi-do (경기도 기초지자체 대기환경 관리정책 지원을 위한 선행 연구)

  • Chanil Jeon;Jingoo Kang;Minyoung Oh;Jaehyeong Choi;Jonghyun Shin;Chanwon Hwang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.275-288
    • /
    • 2023
  • Background: When basic local governments want to improve their air quality management policies, they need fundamental evidence, such as the effectiveness of current policies or scenario results. Objectives: The purpose of this study is to lay the groundwork for a process to calculate air pollutant reduction from basic local government air quality policies and provide numerical estimates of PM2.5 concentrations following improved policies. Methods: We calculated the amount of air pollutant reduction that can be expected in the research region based on the Gyeonggi-do Air Environment Management Implementation Plan issued in 2021 and guidelines from the Korean Ministry of Environment. The PM2.5 concentration variations were numerically simulated using the CMAQ (photochemical air quality model). Results: The research regions selected were Suwon, Ansan, Yongin, Pyeongtaek, and Hwaseong in consideration of population, air pollutant emissions, and geographical requirements. The expected reduction ratios in 2024 compared to 2018 are CO (3.0%), NOx (7.9%), VOCs (0.7%), SOx (0.1%), PM10 (2.4%), PM2.5 (6.1%), NH3 (0.05%). The reduced PM2.5 concentration ratio was highest in July and lowest in April. The expected concentration reduction of yearly mean PM2.5 in the research region is 0.12 ㎍/m3 (0.6%). Conclusions: Gyeonggi-do is now able to quickly provide air pollutant emission reduction calculations by respective policy scenario and PM2.5 simulation results, including for secondary aerosol particles. In order to provide more generalized results to basic local governments, it is necessary to conduct additional research by expanding the analysis tools and periods.

Development and Validation of an Improved 5-DOF Aircraft Dynamic Model for Air Traffic Control Simulation (항공교통관제 시뮬레이션을 위한 개선된 5 자유도 항공기 운동 모델 개발 및 검증방안 연구)

  • Kang, Jisoo;Oh, Hyeju;Choi, Keeyoung;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.387-393
    • /
    • 2016
  • To perform realistic air traffic control (ATC) simulation in various air traffic situations, an aircraft dynamic model that is accurate and efficient is required. In this research, an improved five degree of freedom (5-DOF) dynamic model with feedback control and guidance law is developed, which utilizes selected performance data and operational specifications from the base of aircraft data (BADA) and estimations using aircraft design techniques to improve the simulation fidelity. In addition, takeoff weight is estimated based on the aircraft type and flight plan to improve simulation accuracy. The dynamic model is validated by comparing the simulation results with recorded flight trajectories. An ATC simulation system using this 5-DOF model can be used for various ATC related research.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct