• Title/Summary/Keyword: the AIR model

Search Result 5,905, Processing Time 0.04 seconds

Landscape Planning and Design Methods with Human Thermal Sensation (인간 열환경 지수(HumanThermal Sensation)를 이용한 조경계획 및 디자인 방법)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Human thermal sensation based on a human energy balance model was analyzed in the study areas, the Changwon and Nanaimo sites, on clear days during thesummer of 2009. The climatic input data were air temperature, relative humidity, wind speed and solar and terrestrial radiation. The most effective factors for human thermal sensation were direct beam solar radiation, building view factor and wind speed. Shaded locations had much lower thermal sensation, slightly warm, than sunny locations, very hot. Also, narrow streets in the Nanaimo site had higher thermal sensation than open spaces because of greater reflected solar radiation and terrestrial radiation from their surrounding buildings. Calm wind speed also produced much higher thermal sensation, which reduced sensible and latent heat loss from the human body. By adopting climatic factors into landscape architecture, the human thermal sensation analysis method promises to help create thermally comfortable outdoor areas. The method can also be used for urban heat island modification and climate change studies.

Design of Rotating Moving-Magnet-Type VCM Actuator for Miniaturized Mobile Robot (소형 이동 로봇을 위한 회전형 보이스 코일 구동기 개발)

  • Shin, Bu Hyun;Lee, Seung-Yop;Lee, Kyung-Min;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1529-1534
    • /
    • 2013
  • A voice coil actuator with a rotating moving magnet has been developed for a miniaturized mobile robot. The actuator has simple structure comprising a magnet, a coil, and a yoke. Actuator performance is predicted using a linearized theoretical model, and dynamic performance based on the air-gap between the magnet and the coil is predicted using motor constant and restoring constant obtained through finite element simulations. The theoretical model was verified using a prototype with 60 Hz resonance and 80 Hz bandwidth. We found that an input of 1.5 V can make the actuator rotate by $20^{\circ}$ statically. The driving configuration of the proposed actuator can be simplified because of its implementation of open-loop control.

Decision of Available Soil Depth Based on Physical and Hydraulic Properties of Soils for Landscape Vegetation in Incheon International Airport

  • Jung, Yeong-Sang;Lee, Hyun-Il;Jung, Mun-Ho;Lee, Jeong-Ho;Kim, Jeong-Tae;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.522-527
    • /
    • 2015
  • Decision of available soil depth based on soil physical and hydraulic properties for the $3^{rd}$ Landscape Vegetation Project in the Incheon International Airport was attempted. The soil samples were collected from the 8 sites at different depths, 0-20 and 20-60cm, for the three project fields, A, B, and C area. Physical and chemical properties including particle size distribution, organic matter content and electrical conductivity were analyzed. Hydrological properties including bulk density and water holding capacity at different water potential, -6 kPa, -10 kPa, -33 kPa, and -1500 kPa were calculated by SPAW model of Saxton and Rawls (2006), and air entry value was calculated by Campbell model (1985). Based on physical and hydrological limitation, feasibility and design criteria of soil depth for vegetation and landfill were recommended. Since the soil salinity of the soil in area A area was $19.18dS\;m^{-1}$ in top soil and $22.27dS\;m^{-1}$ in deep soil, respectively, landscape vegetation without amendment would not be possible on this area. Available soil depth required for vegetation was 2.51 m that would secure root zone water holding capacity, capillary fringe, and porosity. Available soil depth required for landscape vegetation of the B area soil was 1.51 m including capillary fringe 0.14 m and available depth for 10% porosity 1.35 m. The soils in this area were feasible for landscape vegetation. The soil in area C was feasible for bottom fill purpose only due to low water holding capacity.

A Study on Real Time Fault Diagnosis and Health Estimation of Turbojet Engine through Gas Path Analysis (가스경로해석을 통한 터보제트엔진의 실시간 고장 진단 및 건전성 추정에 관한 연구)

  • Han, Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.311-320
    • /
    • 2021
  • A study is performed for the real time fault diagnosis during operation and health estimation relating to performance deterioration in a turbojet engine used for an unmanned air vehicle. For this study the real time dynamic model is derived from the transient thermodynamic gas path analysis. For real fault conditions which are manipulated for the simulation, the detection techniques are applied such as Kalman filter and probabilistic decision-making approach based on statistical hypothesis test. Thereby the effectiveness is verified by showing good fault detection and isolation performances. For the health estimation with measurement parameters, it shows using an assumed performance degradation that the method by adaptive Kalman filter is feasible in practice for a condition based diagnosis and maintenance.

Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2010
  • Identification of a steady state is the first step in developing a fault detection and diagnosis (FDD) system of a heat pump. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm, which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representative measurements were selected as key features for steady-state detection. The optimized moving-window size and the feature thresholds were decided on the basis of a startup-transient test and no-fault steady-state test. Performance of the steady-state detector was verified during an indoor load-change test. In this study, a general methodology for designing a moving-window steady-state detector for applications involving vapor compression has been established.

Mixing Characteristics in Supersonic Combustor with a Cavity (Cavity를 이용한 초음속 연소기 내의 혼합특성)

  • Oh Juyoung;Bae Young-Woo;Kim Ki-Su;Jeon Young-Jin;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.359-363
    • /
    • 2005
  • In SCRamjet engine, combustion occurs in supersonic flow with airbreathing. SCRamjet is characterized by very short combustion time in combustor, so it is very important to be mixing the air and fuel in short duration. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for enhancement of mixing. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. CFD-Fastran, commercial code with three-dimensional Navier-Stokes equation with the Menter SST turbulence model were used. The results are obtained validate experiment results for same condition. Therefore, the numerical results show the mixing enhancement characteristics with a cavity.

  • PDF

The Effect of Heterogeneous Preference on Non-market Valuation (가계의 이질적 선호가 비시장재 가치의 추정에 미치는 영향)

  • Kim, Yong-Joo
    • Environmental and Resource Economics Review
    • /
    • v.16 no.4
    • /
    • pp.873-900
    • /
    • 2007
  • Non-market valuation studies tend to assume that individual households have homogeneous preferences for a non-market good to value. However, since the preferences for non-market goods, especially environmental goods are more likely to be heterogeneous by nature, it may be more appropriate to assume heterogeneous preferences for non-market goods, which may in turn may lead to reduced biases in the WTP estimation. This study investigate the extent to which individual households have heterogeneous preferences for reduced concentrations of radon, a radioactive indoor air pollutant, for road safety, and for nuclear power safety. We also analyze the effect of heterogeneity assumption on the results of model and WTP estimation. Using the choice experiments and mixed logit models, we found that allowing for heterogeneous preferences improved model fitness and that there existed heterogeneous preferences for both reduced radon concentration and road safety, albeit not for nuclear power safety. The mean WTP for reduced radon concentrations and road safety increased by factors of 2.44 and l.74 respectively with the models allowing for heterogeneous preferences.

  • PDF

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.

Reliable Hub Location Problems and Network Design (신뢰성에 기반한 허브 입지 모델과 네트워크 디자인)

  • Kim, Hyun
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.540-556
    • /
    • 2009
  • The hub and spoke network is a critical network-based infrastructure that is widely applied in current transportation and telecommunications systems, including Internets, air transportation networks and highway systems. This main idea of hub location models is to construct a network system which achieves the economy of scale of flows. The main purpose of this study is to introduce new hub location problems that take into account network reliability. Two standard models based on assignment schemes are proposed, and a minimum threshold model is provided as an extension in terms of hub network design. The reliability and interaction potentials of 15 nodes in the U.S. are used to examine model behaviors. According to the type of models and reliability, hubs, and minimum threshold levels, relationships among the flow economy of scale, network costs, and network resiliency are analyzed.

  • PDF

The study of masan barber's coastal line change during 100years

  • Choi, Chul-Uong;Kim, Young-Seop;Cho, Sung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.273-273
    • /
    • 2002
  • Masan barber was situated in S.Korean southern central coast. And it is contributing greatly in S.korea's economy development to international trading port of Heaven's blessing that possess natural, geographical situation. Also, because there are Masan free tax area and chanwon heavy industrial complex, sachon air industrial complex etc. on back, it is important permanency in our country. Specially, because inland transport routes such as southern highway, Guma highway and national road system are developed well, the importance is very high. Masan harbor 1899.05.01 be that opened, the 1st and 2nd (central pier) was build 1938∼1944 year, and the 3rd pier was 1973∼1978 year. the 4th pier was 1974∼1983 year, 5th pier was 1984∼1988, 6th pier (west pier) was 1985∼1992 year. it was developed over 100 years. But, it did great many harbor and bay development of last 100 yens but research about coastline change and seashore reclamation is insufficient. Therefore, this research executed research about coastline change of Masan bay of last 100 years, In this study, we analyzed aerial photographs and tide data for the past 100 years using digital aerial photo analysis and GIS techniques for each 3-year interval. We abstracted beach DEM (digital elevation model) and ortho aerial photographs, and conducted a space analysis. As a result, we were able to identify changes in the area As a result, we drew 10 years cycle coastline change of Masan bay. and we can detect bay coastal line change and calculate refill rate.

  • PDF