• Title/Summary/Keyword: the AIR model

Search Result 5,901, Processing Time 0.041 seconds

Development of Thermal Storage System in Plastic Greenhouse (I) -Development of Air-Water Heat Exchange System- (플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템 개발(開發)에 관(關)한 연구(硏究)(I) -수막식(水膜式) 열교환(熱交換) 시스템의 개발(開發)-)

  • Kim, Y.H.;Koh, H.K.;Kim, M.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.14-22
    • /
    • 1990
  • For efficient use of solar energy in plastic greenhouse, thermal storage system was developed. The system was constructed with the counter-flow type air-water heat exchanger using a thin polyethylene film as a medium of heat exchange parts. Experiments were carried out to investigate the heat exchange rate, optimum water flow rate, overall heat transfer coefficient, and the effectiveness of the counter-flow type air-water heat exchanger with polyethylene film bags. Mathematical model to predict air temperature leaving heat exchanger was developed. The results obtained in the present study are summarized as follows. 1. Heat exchange rate in the counter-flow type air-water heat exchanger with polyethylene film bags was compared to that of polyethylene film. Heat exchange rate was almost identical at air velocity of 0.5m/s on polyethylene film surface. But, heat exchange rate of heat exchanger with polyethylene film bag was $32{\sim}55KJ/m^2$ hr higher than that of polyethylene film at air velocity of 1.0m/s. 2. Considering the formation of uniform water film and the sufficient heat exchange rate of polyethylene film bags, optimum water flow rate in polyethylene film bags was $3.0{\sim}6.0{\ell}/m^2$ min. 3. The overall heat transfer coefficient of polyethylene film bags was found to be $35.0{\sim}130.0KJ/m^2\;hr\;^{\circ}C$ corresponding to the air velocity ranging 0.5 to 4.0 m/s on polyethylene film surface. And the overall heat transfer coefficient showed almost linearly increasing tendency to the variation of air velocity. 4. Mathematical model to predict air temperature leaving the heat exchanger was developed, resulting in a good agreement between the experimental and predicted values. But, the experimental results were a little lower than predicted. 5. Effectiveness of heat exchanger for the experiment was found to be 0.40~0.81 corresponding to the number of transfer units due to the variation of air velocity ranging 0.6 to 1.7 m/s.

  • PDF

A Numerical Simulation of Air Pollutant Concentration Considering Land and Sea Breeze in Ulsan Area (해륙풍을 고려한 울산지역 대기오염물질농도의 수치모의)

  • 이화운;원경미;정우식;오은주;김민선;도우곤
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.933-943
    • /
    • 2002
  • The urban pollution if affected by local environmental, so it is necessary to consider area characteristics such as emission source and meteorological phenomena, in studying urban air pollution. Ulsan is laocated on south-east coast and has many industrial facilities, so many people have concerned about air pollution. This study contain conducting numerical simulation of air pollutant concentration considered land and sea breeze in Ulsan area with the numerical model.

Air Pollution Risk Prediction System Utilizing Deep Learning Focused on Cardiovascular Disease

  • Lee, Jisu;Moon, Yoo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.267-275
    • /
    • 2022
  • This paper proposed a Deep Neural Network Model system utilizing Keras for predicting air pollution risk of the cardiovascular disease through the effect of each component of air on the harmful virus using past air information, with analyzing 18,000 data sets of the Seoul Open Data Plaza. By experiments, the model performed tasks with higher accuracy when using methods of sigmoid, binary_crossentropy, adam, and accuracy through 3 hidden layers with each 8 nodes, resulting in 88.92% accuracy. It is meaningful in that any respiratory disease can utilize the risk prediction system if there are data on the effects of each component of air pollution and fine dust on oil-borne diseases. It can be further developed to provide useful information to companies that produce masks and air purification products.

Modeling of coupled liquid-gas-solid three-phase processes due to fluid injection

  • Zang, Yong-Ge;Sun, Dong-Mei;Feng, Ping;Stephan, Semprich
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 2017
  • A coupled liquid-gas-solid three-phase model, linking two numerical codes (TOUGH2/EOS3 and $FLAC^{3D}$), was firstly established and validated by simulating an in-situ air flow test in Essen. Then the coupled model was employed to investigate responses of multiphase flow and soil skeleton deformation to compressed air or freshwater injection using the same simulation conditions in an aquifer of Tianjin, China. The simulation results show that with injecting pressurized fluids, the vertical effective stress in some area decreases owing to the pore pressure increasing, an expansion of soil skeleton appears, and land uplift occurs due to support actions from lower deformed soils. After fluids injection stops, soil deformation decreases overall due to injecting fluids dissipating. With the same applied pressure, changes in multiphase flow and geo-mechanical deformation caused by compressed air injection are relatively greater than those by freshwater injection. Furthermore, the expansion of soil skeleton induced by compressed air injection transfers upward and laterally continuously with time, while during and after freshwater injection, this expansion reaches rapidly a quasi-steady state. These differences induced by two fluids injection are mainly because air could spread upward and laterally easily for its lower density and phase state transition appears for compressed air injection.

Dispersion of Air Pollutants Dispersion and Odorous Materials in Cheon-an Second Industrial Complex (하절기 천안 제 2산업단지의 대기오염확산 및 악취물질에 관한 연구)

  • Chung, Jin-Do;Hong, Jeng-Hee;Kim, Su-Young;Kim, Jung-Tae;Choi, So-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1316-1322
    • /
    • 2006
  • The purpose of this study is to analyze the pattern distribution of the odorous compounds and air pollutants from the inventory sources in the Cheon-an second industrial complex. Twelve analysis including specified odor materials and air pollutants were concurrently measured during the month of August, 2005 to evalaute odor emission characterization in m3;or treatment facilities. Also, Concentration of air pollutants has been calculated by ISCST3 in ISC3 models. A Korean air diffusion modeling software, Air Master, was developed on a basis of diffusion theories adopted in U.S. EPA's ISC3 model to assess the air quality impact from the stacks. This investigation will be executed how large the complex pollutant sources such as industrial complex contribute to atmospheric environment and air quality of the surrounding the area as predicting by comparing and analyzing results of odorous compounds and air pollutants diffusion concentration model.

Experimental Validation of Two Simulation Models for Two-Phase Loop Thermosyphons

  • Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • Five two-phase closed loop thermosyphons (TLTs) specially designed and constructed for the present study are one small scale loop, two medium scale loops (MSLI and MSLII) and two large scale loops (LSLI and LSLII). Two simulation models based on thermal resistance network, lumped and sectorial, are presented. In the Lumped model, the evaporator section is dealt as one lumped boiling section. Whereas, in the Sectorial model, all possible phenomena which would occur in the evaporator section due to the two-phase boiling process are considered in detail. Flow regimes, the flow transitions between flow regimes and other two-phase parameters involved in two-phase flows are carefully analyzed. In the present study, the results of two different simulation models are compared with experimental results. The comparisons showed that the simulation results by the Lumped model and by the Sectorial model did not show any partiality for the model used for the simulation. The simulation results according to the correlations show the various results in the large different range.

A Study on an Acoustical Model for Gas Leak Detection in a Pipeline (배관계의 가스누설탐지를 위한 음향모델 연구)

  • Yang, Yoon-Sang;Lee, Dong-Hoon;Koh, Jae-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • An acoustical model for detecting the leak location in a buried gas pipeline has been developed. This model is divided into an experimental model for sound diagnosis, and a theoretical model for sound prediction, which is based on the transfer matrix method, representing the sound pressure and the volume velocity as state variables. The power spectrum is measured by attaching only one microphone to the closed end pipe. It has been shown that the response magnitude of acoustic pressure signals calculated by the acoustical model depends upon the thickness and diameter of a pinhole. The validity for the acoustical model has been verified through a comparison between the measured and calculated results.

A study on Air and High Speed Rail modal According to the Introduction of Low Cost Carrier Air Service (저비용항공 진입에 따른 항공과 고속철도수단 선택에 관한 연구)

  • Lim, Sam-Jin;Lim, Kang-Won;Lee, Young-Ihn;Kim, Kyung-Hee
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.51-61
    • /
    • 2008
  • Most of Korea's 15 local airports, with the exception Jeju, Gimpo and Gimhae airports, have been several billion Won in the red each year. It has been reported that one of the causes of the poor financial performance is inaccurate air traffic demand predictions. Under the situation, the entry of low-cost carrier air service using turbo-prop airplanes into the domestic airlines market gets a wide range of support, which is expected to promote the convenience of consumers and help to activate local airports. In this study, the authors (1) suggest a high-speed transport demand model among existing airlines, Korea Train Express (KTX) and low-cost carrier air service; (2) try to make low-cost air carrier demand predictions for a route between Seoul and Daegu through a stated-preference survey; and (3), examine possible effectiveness of selected policy measures by establishing an estimation model. First, fare has a strong influence for mode choice between high-speed transport modes when considering the entry of low-cost carrier air service between Seoul and Daegu. Even low-cost carrier air service fare is set at 38,000 won, which is considerably low compared with that of KTX, in the regions where the total travel time is the same for both low-cost carrier air service and KTX, the probability of selecting low-cost carrier air service is 0.1, which shows little possibility of modal change between high speed transportation means. It is suggested that the fare of low-cost air service between Seoul and Daegu should be within the range of from of 38,000 to 44,000 Won; if it is higher, the demand is likely to be lower than expected.

A Study on the Slippage between a Moving Web and a Roller (이송중인 웹과 롤러의 슬립에 관한 연구)

  • Kwon, Soon-Oh;Shin, Kee-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1542-1547
    • /
    • 2003
  • Air entrainment can become a significant problem in a web handling process. The development of air film between a web and an idle roller can cause a reduction of traction and traction coefficient, by which a slip is occurrred. Computational and experimental study was carried out to describe the slippage of an idle roller for given operating conditions, tension and web velocity. An extended mathematical model to find out a slip condition was developed by using the models of air film height, dynamic traction coefficient, and torque balance of a rotational roller. And by using the extended model, a mechanism to define the slippage between the roller and the moving web was suggested. The results of simulation and experiment showed that the extended dynamic model could properly characterize the rotational motion of the idle roller by considering dynamic traction coefficient. By examining the rotational motion of the idle roller with web dynamics(speed), the mechanism to define al slip condition between the roller and the web was found to be effective.

  • PDF

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.